harpomaxx commited on
Commit
39404fa
·
verified ·
1 Parent(s): bb02219

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -2
app.py CHANGED
@@ -13,13 +13,29 @@ from tqdm.auto import tqdm
13
  import random
14
  import gradio as gr
15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  def generate_images(prompt, guidance_scale, n_samples, num_inference_steps):
17
  seeds = [random.randint(1, 10000) for _ in range(n_samples)]
18
  images = []
19
  for seed in tqdm(seeds):
20
  torch.manual_seed(seed)
21
- image = pipe(prompt, num_inference_steps=num_inference_steps,guidance_scale=guidance_scale).images[0]
22
- images.append(image)
 
 
 
23
  return images
24
 
25
  def gr_generate_images(prompt: str, num_images = 1, num_inference = 20, guidance_scale = 8 ):
 
13
  import random
14
  import gradio as gr
15
 
16
+
17
+ import torchvision.transforms as transforms
18
+
19
+ def tensor_to_pil(tensor):
20
+ # Assuming tensor is normalized
21
+ unnormalize = transforms.Normalize(mean=[-0.5 / 0.5, -0.5 / 0.5, -0.5 / 0.5], std=[1/0.5, 1/0.5, 1/0.5])
22
+ tensor = unnormalize(tensor)
23
+ tensor = tensor.clamp(0, 1)
24
+ tensor = tensor.permute(1, 2, 0) # Convert from CxHxW to HxWxC
25
+ image = Image.fromarray((tensor.numpy() * 255).astype('uint8'))
26
+ return image
27
+
28
+
29
  def generate_images(prompt, guidance_scale, n_samples, num_inference_steps):
30
  seeds = [random.randint(1, 10000) for _ in range(n_samples)]
31
  images = []
32
  for seed in tqdm(seeds):
33
  torch.manual_seed(seed)
34
+ #tensor = pipe(prompt, num_inference_steps=num_inference_steps,guidance_scale=guidance_scale).images[0]
35
+ tensor_image = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale).images[0]
36
+ # Convert tensor to PIL Image
37
+ pil_image = tensor_to_pil(tensor_image)
38
+ images.append(pil_image)
39
  return images
40
 
41
  def gr_generate_images(prompt: str, num_images = 1, num_inference = 20, guidance_scale = 8 ):