harpomaxx commited on
Commit
44ebdab
·
verified ·
1 Parent(s): d062a74

update app.py for exhibition

Browse files
Files changed (1) hide show
  1. app.py +73 -42
app.py CHANGED
@@ -1,31 +1,25 @@
1
  PATH = 'harpomaxx/deeplili' #stable diffusion 1.5
2
  from PIL import Image
3
  import torch
4
- from transformers import CLIPTextModel, CLIPTokenizer
5
- from PIL import Image
 
 
 
6
  from tqdm.auto import tqdm
7
  import random
8
  import gradio as gr
9
- from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
10
-
11
-
12
-
13
- guidance_scale = 8.5 # Scale for classifier-free guidance
14
-
15
-
16
- pipe = StableDiffusionPipeline.from_pretrained(PATH,local_files_only=False ).to("cpu")
17
- guidance_scale = 8.5
18
 
19
  def generate_images(prompt, guidance_scale, n_samples, num_inference_steps):
20
  seeds = [random.randint(1, 10000) for _ in range(n_samples)]
21
- images = []
22
  for seed in tqdm(seeds):
23
  torch.manual_seed(seed)
24
- image = pipe(prompt, num_inference_steps=num_inference_steps,guidance_scale=guidance_scale).images[0]
25
  images.append(image)
26
  return images
27
 
28
- def gr_generate_images(prompt: str, num_images: int, num_inference: int):
29
  prompt = prompt + "sks style"
30
  images = generate_images(prompt, guidance_scale, num_images, num_inference)
31
  return images
@@ -35,36 +29,37 @@ with gr.Blocks() as demo:
35
  [
36
  'A black and white cute character on top of a hill',
37
  1,
38
- 30
39
  ],
40
  [
41
  'Bubbles and mountains in the sky',
42
  1,
43
- 20
44
  ],
45
  [
46
  'A tree with multiple eyes and a small flower muted colors',
47
  1,
48
- 20
49
  ],
50
  [
51
  "3d character on top of a hill",
52
  1,
53
- 20
54
  ],
55
  [
56
  "a poster of a large forest with black and white characters",
57
  1,
58
- 20
59
  ],
60
  ]
61
  gr.Markdown(
62
  """
63
  <img src="https://github.com/harpomaxx/DeepLili/raw/main/images/lilifiallo/660.png" width="150" height="150">
64
 
65
- # #DeepLili v0.45b
66
 
67
  ## Enter your prompt and generate a work of art in the style of Lili's Toy Art paintings.
 
68
  """
69
  )
70
 
@@ -78,39 +73,75 @@ with gr.Blocks() as demo:
78
  ).style(
79
  container=False,
80
  )
81
-
82
  with gr.Row(variant="compact"):
83
- num_images_slider = gr.Slider(
84
- minimum=1,
85
- maximum=10,
86
- step=1,
87
- value=1,
88
- label="Number of Images",
89
- )
90
-
91
- num_inference_steps_slider = gr.Slider(
92
- minimum=1,
93
- maximum=25,
94
- step=1,
95
- value=20,
96
- label="Number of Inference Steps",
97
- )
 
 
 
 
 
 
 
 
 
 
98
 
99
  btn = gr.Button("Generate image").style(full_width=False)
100
-
101
  gallery = gr.Gallery(
102
  label="Generated images", show_label=False, elem_id="gallery"
103
- ).style(columns=[5], rows=[1], object_fit="contain", height="250px", width="250px")
 
 
 
 
104
 
105
- btn.click(gr_generate_images, [text, num_images_slider,num_inference_steps_slider], gallery)
106
  gr.Examples(examples, inputs=[text])
107
  gr.HTML(
108
  """
109
  <h6><a href="https://harpomaxx.github.io/"> harpomaxx </a></h6>
110
- <h6> This space is running on CPU. So it gonna be very slow!!!! </h6>
111
  """
112
  )
113
 
114
  if __name__ == "__main__":
115
- #demo.launch(share=True)
116
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  PATH = 'harpomaxx/deeplili' #stable diffusion 1.5
2
  from PIL import Image
3
  import torch
4
+ import torch.distributed as dist
5
+ import torch.multiprocessing as mp
6
+ import argparse
7
+
8
+ from diffusers import StableDiffusionPipeline, LMSDiscreteScheduler
9
  from tqdm.auto import tqdm
10
  import random
11
  import gradio as gr
 
 
 
 
 
 
 
 
 
12
 
13
  def generate_images(prompt, guidance_scale, n_samples, num_inference_steps):
14
  seeds = [random.randint(1, 10000) for _ in range(n_samples)]
15
+ images = []
16
  for seed in tqdm(seeds):
17
  torch.manual_seed(seed)
18
+ image = pipe(prompt, num_inference_steps=num_inference_steps,guidance_scale=guidance_scale).images[0]
19
  images.append(image)
20
  return images
21
 
22
+ def gr_generate_images(prompt: str, num_images = 1, num_inference = 20, guidance_scale = 8 ):
23
  prompt = prompt + "sks style"
24
  images = generate_images(prompt, guidance_scale, num_images, num_inference)
25
  return images
 
29
  [
30
  'A black and white cute character on top of a hill',
31
  1,
32
+ 30
33
  ],
34
  [
35
  'Bubbles and mountains in the sky',
36
  1,
37
+ 20
38
  ],
39
  [
40
  'A tree with multiple eyes and a small flower muted colors',
41
  1,
42
+ 20
43
  ],
44
  [
45
  "3d character on top of a hill",
46
  1,
47
+ 20
48
  ],
49
  [
50
  "a poster of a large forest with black and white characters",
51
  1,
52
+ 20
53
  ],
54
  ]
55
  gr.Markdown(
56
  """
57
  <img src="https://github.com/harpomaxx/DeepLili/raw/main/images/lilifiallo/660.png" width="150" height="150">
58
 
59
+ # #DeepLili v0.5b
60
 
61
  ## Enter your prompt and generate a work of art in the style of Lili's Toy Art paintings.
62
+ ## (English, Spanish)
63
  """
64
  )
65
 
 
73
  ).style(
74
  container=False,
75
  )
76
+
77
  with gr.Row(variant="compact"):
78
+ # num_images_slider = gr.Slider(
79
+ # minimum=1,
80
+ # maximum=10,
81
+ # step=1,
82
+ # value=1,
83
+ # label="Number of Images",
84
+ # )
85
+
86
+ # num_inference_steps_slider = gr.Slider(
87
+ # minimum=1,
88
+ # maximum=25,
89
+ # step=1,
90
+ # value=20,
91
+ # label="Inference Steps",
92
+ # )
93
+
94
+ # guidance_slider = gr.Slider(
95
+ # minimum=1,
96
+ # maximum=14,
97
+ # step=1,
98
+ # value=8,
99
+ # label="Guidance Scale",
100
+ # )
101
+
102
+
103
 
104
  btn = gr.Button("Generate image").style(full_width=False)
105
+
106
  gallery = gr.Gallery(
107
  label="Generated images", show_label=False, elem_id="gallery"
108
+ ).style(columns=[1], rows=[1], object_fit="contain", height="512px", width="512px")
109
+
110
+ num_images_slider = 1
111
+ num_inference_steps_slider = 20
112
+ guidance_slider = 8
113
 
114
+ btn.click(gr_generate_images, [text], gallery)
115
  gr.Examples(examples, inputs=[text])
116
  gr.HTML(
117
  """
118
  <h6><a href="https://harpomaxx.github.io/"> harpomaxx </a></h6>
 
119
  """
120
  )
121
 
122
  if __name__ == "__main__":
123
+
124
+ parser = argparse.ArgumentParser()
125
+
126
+ parser.add_argument(
127
+ "--ip",
128
+ default="0.0.0.0",
129
+ help="The IP address to of the server"
130
+ )
131
+ parser.add_argument(
132
+ "--port",
133
+ type=int,
134
+ default=7860,
135
+ help="The port used"
136
+ )
137
+ parser.add_argument(
138
+ "--gpuid",
139
+ default="0",
140
+ help="The gpu id"
141
+ )
142
+
143
+ args = parser.parse_args()
144
+ pipe = StableDiffusionPipeline.from_single_file(PATH,torch_dtype=torch.float16).to(f"cuda:{args.gpuid}")
145
+ demo.queue(concurrency_count=2,
146
+ ).launch(server_name = args.ip, server_port = args.port)
147
+ ~