File size: 1,224 Bytes
efa1c73
 
b260a83
efa1c73
 
 
b260a83
 
6f976d8
b260a83
 
 
efa1c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3711b12
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
library(keras)
library(plumber)
library(reticulate)

# loading the DGA model for classifier 
#model<-load_model_hdf5("/home/harpo/Dropbox/ongoing-work/git-repos/dga-wb-r/docker/app/pmodel.h5")
#model<-load_model_hdf5("/app/asai-2019_model.h5")

hfhub <- reticulate::import('huggingface_hub')
model <- hfhub$from_pretrained_keras("harpomaxx/dga-detector")


modelid="cacic-2018-model"

valid_characters <- "$abcdefghijklmnopqrstuvwxyz0123456789-_."
valid_characters_vector <- strsplit(valid_characters,split="")[[1]]
tokens <- 0:length(valid_characters_vector)
names(tokens) <- valid_characters_vector


# testing function
#* @get /echo
function(msg="Hi!"){
  list(msg = paste("The message is: ", msg))
}

# DGA prediction function
#* @get /predict
#* @serializer unboxedJSON
function(domain){
  domain_encoded <-
	   
	  	sapply( 
			unlist(strsplit(tolower(domain),split="")), function(x) tokens [[x]] 
			) 
	  		
		       #	{tokens[[x]] })
  domain_encoded<-pad_sequences(t(domain_encoded),maxlen=45,padding='post', truncating='post')

  prediction<-predict(model,domain_encoded)
  return(list(modelid=modelid,domain=domain,class=ifelse(prediction[1]>0.9,1,0),probability=prediction[1]))
}

#* @assets ./static /
list()