File size: 4,616 Bytes
0dd8117
 
eda2dbf
c90c7ed
42f3ad6
eda2dbf
 
 
 
c90c7ed
eda2dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd8117
eda2dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd8117
 
 
 
eda2dbf
 
0dd8117
eda2dbf
0dd8117
 
 
 
eda2dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd8117
 
eda2dbf
 
 
 
 
 
0dd8117
eda2dbf
 
 
 
0dd8117
eda2dbf
0dd8117
 
 
eda2dbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0dd8117
 
eda2dbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import gradio as gr
from huggingface_hub import InferenceClient
from openai import OpenAI
from prompt_template import PromptTemplate, PromptLoader
from assistant import AIAssistant
from pathlib import Path

# Load prompts from YAML
prompts = PromptLoader.load_prompts("prompts.yaml")

# Available models and their configurations
MODELS = {
    "Zephyr 7B Beta": {
        "name": "HuggingFaceH4/zephyr-7b-beta",
        "provider": "huggingface"
    },
    "Mistral 7B": {
        "name": "mistralai/Mistral-7B-v0.1",
        "provider": "huggingface"
    },
    "GPT-3.5 Turbo": {
        "name": "gpt-3.5-turbo",
        "provider": "openai"
    }
}

# Available prompt strategies
PROMPT_STRATEGIES = {
    "Default": "system_context",
    "Chain of Thought": "cot_prompt",
    "Knowledge-based": "knowledge_prompt",
    "Few-shot Learning": "few_shot_prompt",
    "Meta-prompting": "meta_prompt"
}

def create_assistant(model_name):
    model_info = MODELS[model_name]
    if model_info["provider"] == "huggingface":
        client = InferenceClient(model_info["name"])
    else:  # OpenAI
        client = OpenAI()
    
    return AIAssistant(
        client=client,
        model=model_info["name"]
    )

def respond(
    message,
    history: list[tuple[str, str]],
    model_name,
    prompt_strategy,
    system_message,
    override_params: bool,
    max_tokens,
    temperature,
    top_p,
):
    assistant = create_assistant(model_name)
    
    # Get prompt template
    prompt_template: PromptTemplate = prompts[PROMPT_STRATEGIES[prompt_strategy]]
    
    # Generate system message using prompt template
    formatted_system_message = prompt_template.format(prompt_strategy=system_message)
    
    # Prepare messages
    messages = [{"role": "system", "content": formatted_system_message}]
    for user_msg, assistant_msg in history:
        if user_msg:
            messages.append({"role": "user", "content": user_msg})
        if assistant_msg:
            messages.append({"role": "assistant", "content": assistant_msg})
    messages.append({"role": "user", "content": message})

    # Get generation parameters
    generation_params = prompt_template.parameters if not override_params else {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p
    }

    # Generate response using the assistant
    for response in assistant.generate_response(
        prompt_template=prompt_template,
        generation_params=generation_params,
        stream=True,
        messages=messages
    ):
        yield response

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            model_dropdown = gr.Dropdown(
                choices=list(MODELS.keys()),
                value=list(MODELS.keys())[0],
                label="Select Model"
            )
            prompt_strategy_dropdown = gr.Dropdown(
                choices=list(PROMPT_STRATEGIES.keys()),
                value=list(PROMPT_STRATEGIES.keys())[0],
                label="Select Prompt Strategy"
            )
            system_message = gr.Textbox(
                value="You are a friendly and helpful AI assistant.",
                label="System Message"
            )
            
    with gr.Row():
        override_params = gr.Checkbox(
            label="Override Template Parameters",
            value=False
        )
    
    with gr.Row():
        with gr.Column(visible=False) as param_controls:
            max_tokens = gr.Slider(
                minimum=1,
                maximum=2048,
                value=512,
                step=1,
                label="Max new tokens"
            )
            temperature = gr.Slider(
                minimum=0.1,
                maximum=4.0,
                value=0.7,
                step=0.1,
                label="Temperature"
            )
            top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-p (nucleus sampling)"
            )
    
    chatbot = gr.ChatInterface(
        fn=respond,
        additional_inputs=[
            model_dropdown,
            prompt_strategy_dropdown,
            system_message,
            override_params,
            max_tokens,
            temperature,
            top_p,
        ]
    )
    
    def toggle_param_controls(override):
        return gr.Column(visible=override)
    
    override_params.change(
        toggle_param_controls,
        inputs=[override_params],
        outputs=[param_controls]
    )

if __name__ == "__main__":
    demo.launch()