|
from dotenv import load_dotenv |
|
|
|
import os |
|
from pathlib import Path |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
from openai import OpenAI |
|
|
|
from prompt_template import PromptTemplate, PromptLoader |
|
from assistant import AIAssistant |
|
|
|
|
|
load_dotenv() |
|
|
|
API_KEY = os.getenv('API_KEY') |
|
|
|
|
|
prompts = PromptLoader.load_prompts("prompts.yaml") |
|
|
|
|
|
MODELS = { |
|
"Llama 3.3 70B Instruct": { |
|
"name": "meta/llama-3.3-70b-instruct", |
|
}, |
|
"Llama 3.1 405B Instruct": { |
|
"name": "meta/llama-3.1-405b-instruct", |
|
}, |
|
"Llama 3.2 3B Instruct": { |
|
"name": "meta/llama-3.2-3b-instruct", |
|
}, |
|
"Falcon 3 7B Instruct": { |
|
"name": "tiiuae/falcon3-7b-instruct", |
|
}, |
|
"Granite 3.0 8B Instruct": { |
|
"name": "ibm/granite-3.0-8b-instruct", |
|
} |
|
} |
|
|
|
|
|
PROMPT_STRATEGIES = { |
|
"Default": "system_context", |
|
"Chain of Thought": "cot_prompt", |
|
"Knowledge-based": "knowledge_prompt", |
|
"Few-shot Learning": "few_shot_prompt", |
|
"Meta-prompting": "meta_prompt" |
|
} |
|
|
|
def create_assistant(model_name): |
|
client = OpenAI( |
|
base_url = "https://integrate.api.nvidia.com/v1", |
|
api_key = API_KEY |
|
) |
|
|
|
|
|
model_name = MODELS[model_name]["name"] |
|
|
|
return AIAssistant( |
|
client=client, |
|
model=model_name |
|
) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
model_name, |
|
prompt_strategy, |
|
override_params: bool, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
assistant = create_assistant(model_name) |
|
|
|
|
|
prompt_template: PromptTemplate = prompts[PROMPT_STRATEGIES[prompt_strategy]] |
|
system_context: PromptTemplate = prompts["system_context"] |
|
|
|
|
|
formatted_system_message = system_context.format(prompt_strategy=prompt_template.template) |
|
|
|
|
|
messages = [{"role": "system", "content": formatted_system_message}] |
|
|
|
|
|
for user_msg, assistant_msg in history: |
|
if user_msg: |
|
messages.append({"role": "user", "content": str(user_msg)}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": str(assistant_msg)}) |
|
|
|
|
|
messages.append({"role": "user", "content": str(message)}) |
|
|
|
|
|
generation_params = prompt_template.parameters if not override_params else { |
|
"max_tokens": max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p |
|
} |
|
|
|
try: |
|
for response in assistant.generate_response( |
|
prompt_template=prompt_template, |
|
generation_params=generation_params, |
|
stream=True, |
|
messages=messages |
|
): |
|
yield response |
|
except Exception as e: |
|
yield f"Error: {str(e)}" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
model_dropdown = gr.Dropdown( |
|
choices=list(MODELS.keys()), |
|
value=list(MODELS.keys())[0], |
|
label="Select Model" |
|
) |
|
prompt_strategy_dropdown = gr.Dropdown( |
|
choices=list(PROMPT_STRATEGIES.keys()), |
|
value=list(PROMPT_STRATEGIES.keys())[0], |
|
label="Select Prompt Strategy" |
|
) |
|
|
|
with gr.Row(): |
|
override_params = gr.Checkbox( |
|
label="Override Template Parameters", |
|
value=False |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Column(visible=False) as param_controls: |
|
max_tokens = gr.Slider( |
|
minimum=1, |
|
maximum=2048, |
|
value=512, |
|
step=1, |
|
label="Max new tokens" |
|
) |
|
temperature = gr.Slider( |
|
minimum=0.1, |
|
maximum=4.0, |
|
value=0.7, |
|
step=0.1, |
|
label="Temperature" |
|
) |
|
top_p = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)" |
|
) |
|
chatbot = gr.ChatInterface( |
|
fn=respond, |
|
additional_inputs=[ |
|
model_dropdown, |
|
prompt_strategy_dropdown, |
|
override_params, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
] |
|
) |
|
|
|
|
|
with gr.Row(equal_height=True): |
|
with gr.Column(scale=1, min_width=300): |
|
with gr.Accordion("Current Prompt Details", open=False): |
|
system_prompt_display = gr.TextArea( |
|
label="System Prompt", |
|
interactive=False, |
|
lines=20 |
|
) |
|
current_messages_display = gr.JSON( |
|
label="Full Conversation Context", |
|
) |
|
|
|
def toggle_param_controls(override): |
|
return gr.Column(visible=override) |
|
|
|
def update_prompt_display(prompt_strategy): |
|
prompt_template = prompts[PROMPT_STRATEGIES[prompt_strategy]] |
|
system_context = prompts["system_context"] |
|
formatted_system_message = system_context.format(prompt_strategy=prompt_template.template) |
|
|
|
return ( |
|
formatted_system_message, |
|
{ |
|
"Template Parameters": prompt_template.parameters, |
|
"Prompt Strategy": prompt_template.template |
|
} |
|
) |
|
|
|
|
|
prompt_strategy_dropdown.change( |
|
update_prompt_display, |
|
inputs=[prompt_strategy_dropdown], |
|
outputs=[system_prompt_display, current_messages_display] |
|
) |
|
|
|
override_params.change( |
|
toggle_param_controls, |
|
inputs=[override_params], |
|
outputs=[param_controls] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |