se / app.py
Helder Rodrigues
demo
b5cfa50
raw
history blame
527 Bytes
import gradio as gr
from transformers import pipeline
generator = pipeline('text-generation', model='gpt2')
def generate(text):
classifier = pipeline("sentiment-analysis")
result = classifier(text)
return result
examples = [
["SE is the best company in the world!"],
["GE is the worst company in the world!"],
]
demo = gr.Interface(
fn=generate,
inputs=gr.inputs.Textbox(lines=5, label="Input Text"),
outputs=gr.outputs.Textbox(label="Generated Text"),
examples=examples
)
demo.launch()