Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -285,219 +285,12 @@
|
|
285 |
|
286 |
# if __name__ == "__main__":
|
287 |
# iface.launch()
|
288 |
-
from flask import Flask, request, jsonify, render_template_string
|
289 |
-
import os
|
290 |
-
from mistralai.client import MistralClient
|
291 |
-
from mistralai.models.chat_completion import ChatMessage
|
292 |
-
|
293 |
-
app = Flask(__name__)
|
294 |
-
|
295 |
-
# Mistral AI setup
|
296 |
-
api_key = os.getenv("MISTRAL_API_KEY")
|
297 |
-
if not api_key:
|
298 |
-
raise ValueError("MISTRAL_API_KEY environment variable not set")
|
299 |
-
|
300 |
-
model = "mistral-tiny"
|
301 |
-
client = MistralClient(api_key=api_key)
|
302 |
-
|
303 |
-
def generate_goals(input_var):
|
304 |
-
messages = [
|
305 |
-
ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
306 |
-
]
|
307 |
-
try:
|
308 |
-
response = client.chat(model=model, messages=messages)
|
309 |
-
return response.choices[0].message.content
|
310 |
-
except Exception as e:
|
311 |
-
return f"An error occurred: {str(e)}"
|
312 |
-
|
313 |
-
html_content = """
|
314 |
-
<!DOCTYPE html>
|
315 |
-
<html lang="en">
|
316 |
-
<head>
|
317 |
-
<meta charset="UTF-8">
|
318 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
319 |
-
<title>Exam Data Analysis Goals Generator</title>
|
320 |
-
<script src="https://d3js.org/d3.v7.min.js"></script>
|
321 |
-
<style>
|
322 |
-
#visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
323 |
-
#generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
324 |
-
</style>
|
325 |
-
</head>
|
326 |
-
<body>
|
327 |
-
<h1>Exam Data Analysis Goals Generator</h1>
|
328 |
-
<div id="visualization"></div>
|
329 |
-
<div id="generatedGoals"></div>
|
330 |
-
<script>
|
331 |
-
const width = 1200;
|
332 |
-
const height = 800;
|
333 |
-
const goals = [
|
334 |
-
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
335 |
-
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
336 |
-
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
337 |
-
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
338 |
-
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
339 |
-
{ id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
340 |
-
{ id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
341 |
-
{ id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
342 |
-
{ id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
343 |
-
{ id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
344 |
-
{ id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
345 |
-
{ id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
346 |
-
{ id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
347 |
-
{ id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
348 |
-
{ id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
349 |
-
{ id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
350 |
-
{ id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
351 |
-
{ id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
352 |
-
{ id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
353 |
-
{ id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
354 |
-
{ id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
355 |
-
{ id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
356 |
-
{ id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
357 |
-
{ id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
358 |
-
{ id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
359 |
-
{ id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
360 |
-
{ id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
361 |
-
{ id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
362 |
-
{ id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
363 |
-
{ id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
364 |
-
];
|
365 |
-
const connections = [
|
366 |
-
{ source: 1, target: 2 },
|
367 |
-
{ source: 2, target: 3 },
|
368 |
-
{ source: 3, target: 4 },
|
369 |
-
{ source: 4, target: 5 },
|
370 |
-
{ source: 5, target: 7 },
|
371 |
-
{ source: 6, target: 7 },
|
372 |
-
{ source: 7, target: 8 },
|
373 |
-
{ source: 8, target: 9 },
|
374 |
-
{ source: 9, target: 16 },
|
375 |
-
{ source: 10, target: 13 },
|
376 |
-
{ source: 11, target: 12 },
|
377 |
-
{ source: 12, target: 20 },
|
378 |
-
{ source: 13, target: 16 },
|
379 |
-
{ source: 14, target: 21 },
|
380 |
-
{ source: 15, target: 17 },
|
381 |
-
{ source: 16, target: 18 },
|
382 |
-
{ source: 17, target: 19 },
|
383 |
-
{ source: 18, target: 22 },
|
384 |
-
{ source: 19, target: 21 },
|
385 |
-
{ source: 20, target: 29 },
|
386 |
-
{ source: 21, target: 30 },
|
387 |
-
{ source: 22, target: 23 },
|
388 |
-
{ source: 23, target: 25 },
|
389 |
-
{ source: 24, target: 12 },
|
390 |
-
{ source: 25, target: 23 },
|
391 |
-
{ source: 26, target: 15 },
|
392 |
-
{ source: 27, target: 15 },
|
393 |
-
{ source: 28, target: 22 },
|
394 |
-
{ source: 29, target: 23 },
|
395 |
-
{ source: 30, target: 21 },
|
396 |
-
// Additional connections for more interconnectivity
|
397 |
-
{ source: 1, target: 10 },
|
398 |
-
{ source: 2, target: 6 },
|
399 |
-
{ source: 3, target: 13 },
|
400 |
-
{ source: 4, target: 15 },
|
401 |
-
{ source: 5, target: 28 },
|
402 |
-
{ source: 8, target: 23 },
|
403 |
-
{ source: 11, target: 25 },
|
404 |
-
{ source: 14, target: 30 },
|
405 |
-
{ source: 24, target: 17 },
|
406 |
-
{ source: 26, target: 29 }
|
407 |
-
];
|
408 |
-
const svg = d3.select("#visualization")
|
409 |
-
.append("svg")
|
410 |
-
.attr("width", width)
|
411 |
-
.attr("height", height);
|
412 |
-
const simulation = d3.forceSimulation(goals)
|
413 |
-
.force("link", d3.forceLink(connections).id(d => d.id))
|
414 |
-
.force("charge", d3.forceManyBody().strength(-400))
|
415 |
-
.force("center", d3.forceCenter(width / 2, height / 2));
|
416 |
-
const link = svg.append("g")
|
417 |
-
.selectAll("line")
|
418 |
-
.data(connections)
|
419 |
-
.enter().append("line")
|
420 |
-
.attr("stroke", "#999")
|
421 |
-
.attr("stroke-opacity", 0.6);
|
422 |
-
const node = svg.append("g")
|
423 |
-
.selectAll("circle")
|
424 |
-
.data(goals)
|
425 |
-
.enter().append("circle")
|
426 |
-
.attr("r", 10)
|
427 |
-
.attr("fill", d => d.color)
|
428 |
-
.call(d3.drag()
|
429 |
-
.on("start", dragstarted)
|
430 |
-
.on("drag", dragged)
|
431 |
-
.on("end", dragended));
|
432 |
-
const text = svg.append("g")
|
433 |
-
.selectAll("text")
|
434 |
-
.data(goals)
|
435 |
-
.enter().append("text")
|
436 |
-
.text(d => d.name)
|
437 |
-
.attr("font-size", "12px")
|
438 |
-
.attr("dx", 12)
|
439 |
-
.attr("dy", 4);
|
440 |
-
node.on("click", async function(event, d) {
|
441 |
-
const response = await fetch('/generate_goals', {
|
442 |
-
method: 'POST',
|
443 |
-
headers: { 'Content-Type': 'application/json' },
|
444 |
-
body: JSON.stringify({ input_var: d.name })
|
445 |
-
});
|
446 |
-
const data = await response.json();
|
447 |
-
document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
448 |
-
});
|
449 |
-
simulation.on("tick", () => {
|
450 |
-
link
|
451 |
-
.attr("x1", d => d.source.x)
|
452 |
-
.attr("y1", d => d.source.y)
|
453 |
-
.attr("x2", d => d.target.x)
|
454 |
-
.attr("y2", d => d.target.y);
|
455 |
-
node
|
456 |
-
.attr("cx", d => d.x)
|
457 |
-
.attr("cy", d => d.y);
|
458 |
-
text
|
459 |
-
.attr("x", d => d.x)
|
460 |
-
.attr("y", d => d.y);
|
461 |
-
});
|
462 |
-
function dragstarted(event) {
|
463 |
-
if (!event.active) simulation.alphaTarget(0.3).restart();
|
464 |
-
event.subject.fx = event.subject.x;
|
465 |
-
event.subject.fy = event.subject.y;
|
466 |
-
}
|
467 |
-
function dragged(event) {
|
468 |
-
event.subject.fx = event.x;
|
469 |
-
event.subject.fy = event.y;
|
470 |
-
}
|
471 |
-
function dragended(event) {
|
472 |
-
if (!event.active) simulation.alphaTarget(0);
|
473 |
-
event.subject.fx = null;
|
474 |
-
event.subject.fy = null;
|
475 |
-
}
|
476 |
-
</script>
|
477 |
-
</body>
|
478 |
-
</html>
|
479 |
-
"""
|
480 |
-
|
481 |
-
@app.route('/')
|
482 |
-
def index():
|
483 |
-
return render_template_string(html_content)
|
484 |
-
|
485 |
-
@app.route('/generate_goals', methods=['POST'])
|
486 |
-
def generate_goals_api():
|
487 |
-
input_var = request.json['input_var']
|
488 |
-
goals = generate_goals(input_var)
|
489 |
-
return jsonify({'goals': goals})
|
490 |
-
|
491 |
-
if __name__ == "__main__":
|
492 |
-
app.run(host='0.0.0.0', port=7860)
|
493 |
-
|
494 |
-
# imp
|
495 |
-
# from http.server import HTTPServer, SimpleHTTPRequestHandler
|
496 |
-
# from pyngrok import ngrok
|
497 |
# import os
|
498 |
# from mistralai.client import MistralClient
|
499 |
# from mistralai.models.chat_completion import ChatMessage
|
500 |
-
|
|
|
501 |
|
502 |
# # Mistral AI setup
|
503 |
# api_key = os.getenv("MISTRAL_API_KEY")
|
@@ -538,20 +331,80 @@ if __name__ == "__main__":
|
|
538 |
# const width = 1200;
|
539 |
# const height = 800;
|
540 |
# const goals = [
|
541 |
-
#
|
542 |
-
#
|
543 |
-
#
|
544 |
-
#
|
545 |
-
#
|
546 |
-
#
|
547 |
-
#
|
548 |
-
#
|
549 |
-
#
|
550 |
-
#
|
551 |
-
#
|
552 |
-
#
|
553 |
-
#
|
554 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
555 |
# const svg = d3.select("#visualization")
|
556 |
# .append("svg")
|
557 |
# .attr("width", width)
|
@@ -571,7 +424,7 @@ if __name__ == "__main__":
|
|
571 |
# .data(goals)
|
572 |
# .enter().append("circle")
|
573 |
# .attr("r", 10)
|
574 |
-
# .attr("fill", d => d.color
|
575 |
# .call(d3.drag()
|
576 |
# .on("start", dragstarted)
|
577 |
# .on("drag", dragged)
|
@@ -625,34 +478,181 @@ if __name__ == "__main__":
|
|
625 |
# </html>
|
626 |
# """
|
627 |
|
628 |
-
#
|
629 |
-
#
|
630 |
-
#
|
631 |
-
# self.send_header('Content-type', 'text/html')
|
632 |
-
# self.end_headers()
|
633 |
-
# self.wfile.write(html_content.encode())
|
634 |
|
635 |
-
#
|
636 |
-
#
|
637 |
-
#
|
638 |
-
#
|
639 |
-
#
|
640 |
-
# input_var = data['input_var']
|
641 |
-
# goals = generate_goals(input_var)
|
642 |
-
|
643 |
-
# self.send_response(200)
|
644 |
-
# self.send_header('Content-type', 'application/json')
|
645 |
-
# self.end_headers()
|
646 |
-
# self.wfile.write(json.dumps({'goals': goals}).encode())
|
647 |
-
# else:
|
648 |
-
# self.send_error(404)
|
649 |
|
650 |
-
# if __name__ ==
|
651 |
-
# port
|
652 |
-
|
653 |
-
#
|
654 |
-
|
655 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
|
657 |
# here
|
658 |
# from http.server import HTTPServer, SimpleHTTPRequestHandler
|
|
|
285 |
|
286 |
# if __name__ == "__main__":
|
287 |
# iface.launch()
|
288 |
+
# from flask import Flask, request, jsonify, render_template_string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
# import os
|
290 |
# from mistralai.client import MistralClient
|
291 |
# from mistralai.models.chat_completion import ChatMessage
|
292 |
+
|
293 |
+
# app = Flask(__name__)
|
294 |
|
295 |
# # Mistral AI setup
|
296 |
# api_key = os.getenv("MISTRAL_API_KEY")
|
|
|
331 |
# const width = 1200;
|
332 |
# const height = 800;
|
333 |
# const goals = [
|
334 |
+
# { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
335 |
+
# { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
336 |
+
# { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
337 |
+
# { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
338 |
+
# { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
339 |
+
# { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
|
340 |
+
# { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
|
341 |
+
# { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
|
342 |
+
# { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
|
343 |
+
# { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
|
344 |
+
# { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
|
345 |
+
# { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
|
346 |
+
# { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
|
347 |
+
# { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
|
348 |
+
# { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
|
349 |
+
# { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
|
350 |
+
# { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
|
351 |
+
# { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
|
352 |
+
# { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
|
353 |
+
# { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
|
354 |
+
# { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
|
355 |
+
# { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
|
356 |
+
# { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
|
357 |
+
# { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
|
358 |
+
# { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
|
359 |
+
# { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
|
360 |
+
# { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
|
361 |
+
# { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
|
362 |
+
# { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
|
363 |
+
# { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
|
364 |
+
# ];
|
365 |
+
# const connections = [
|
366 |
+
# { source: 1, target: 2 },
|
367 |
+
# { source: 2, target: 3 },
|
368 |
+
# { source: 3, target: 4 },
|
369 |
+
# { source: 4, target: 5 },
|
370 |
+
# { source: 5, target: 7 },
|
371 |
+
# { source: 6, target: 7 },
|
372 |
+
# { source: 7, target: 8 },
|
373 |
+
# { source: 8, target: 9 },
|
374 |
+
# { source: 9, target: 16 },
|
375 |
+
# { source: 10, target: 13 },
|
376 |
+
# { source: 11, target: 12 },
|
377 |
+
# { source: 12, target: 20 },
|
378 |
+
# { source: 13, target: 16 },
|
379 |
+
# { source: 14, target: 21 },
|
380 |
+
# { source: 15, target: 17 },
|
381 |
+
# { source: 16, target: 18 },
|
382 |
+
# { source: 17, target: 19 },
|
383 |
+
# { source: 18, target: 22 },
|
384 |
+
# { source: 19, target: 21 },
|
385 |
+
# { source: 20, target: 29 },
|
386 |
+
# { source: 21, target: 30 },
|
387 |
+
# { source: 22, target: 23 },
|
388 |
+
# { source: 23, target: 25 },
|
389 |
+
# { source: 24, target: 12 },
|
390 |
+
# { source: 25, target: 23 },
|
391 |
+
# { source: 26, target: 15 },
|
392 |
+
# { source: 27, target: 15 },
|
393 |
+
# { source: 28, target: 22 },
|
394 |
+
# { source: 29, target: 23 },
|
395 |
+
# { source: 30, target: 21 },
|
396 |
+
# // Additional connections for more interconnectivity
|
397 |
+
# { source: 1, target: 10 },
|
398 |
+
# { source: 2, target: 6 },
|
399 |
+
# { source: 3, target: 13 },
|
400 |
+
# { source: 4, target: 15 },
|
401 |
+
# { source: 5, target: 28 },
|
402 |
+
# { source: 8, target: 23 },
|
403 |
+
# { source: 11, target: 25 },
|
404 |
+
# { source: 14, target: 30 },
|
405 |
+
# { source: 24, target: 17 },
|
406 |
+
# { source: 26, target: 29 }
|
407 |
+
# ];
|
408 |
# const svg = d3.select("#visualization")
|
409 |
# .append("svg")
|
410 |
# .attr("width", width)
|
|
|
424 |
# .data(goals)
|
425 |
# .enter().append("circle")
|
426 |
# .attr("r", 10)
|
427 |
+
# .attr("fill", d => d.color)
|
428 |
# .call(d3.drag()
|
429 |
# .on("start", dragstarted)
|
430 |
# .on("drag", dragged)
|
|
|
478 |
# </html>
|
479 |
# """
|
480 |
|
481 |
+
# @app.route('/')
|
482 |
+
# def index():
|
483 |
+
# return render_template_string(html_content)
|
|
|
|
|
|
|
484 |
|
485 |
+
# @app.route('/generate_goals', methods=['POST'])
|
486 |
+
# def generate_goals_api():
|
487 |
+
# input_var = request.json['input_var']
|
488 |
+
# goals = generate_goals(input_var)
|
489 |
+
# return jsonify({'goals': goals})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
490 |
|
491 |
+
# if __name__ == "__main__":
|
492 |
+
# app.run(host='0.0.0.0', port=7860)
|
493 |
+
|
494 |
+
# imp
|
495 |
+
from http.server import HTTPServer, SimpleHTTPRequestHandler
|
496 |
+
# from pyngrok import ngrok
|
497 |
+
import os
|
498 |
+
from mistralai.client import MistralClient
|
499 |
+
from mistralai.models.chat_completion import ChatMessage
|
500 |
+
import json
|
501 |
+
|
502 |
+
# Mistral AI setup
|
503 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
504 |
+
if not api_key:
|
505 |
+
raise ValueError("MISTRAL_API_KEY environment variable not set")
|
506 |
+
|
507 |
+
model = "mistral-tiny"
|
508 |
+
client = MistralClient(api_key=api_key)
|
509 |
+
|
510 |
+
def generate_goals(input_var):
|
511 |
+
messages = [
|
512 |
+
ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
|
513 |
+
]
|
514 |
+
try:
|
515 |
+
response = client.chat(model=model, messages=messages)
|
516 |
+
return response.choices[0].message.content
|
517 |
+
except Exception as e:
|
518 |
+
return f"An error occurred: {str(e)}"
|
519 |
+
|
520 |
+
html_content = """
|
521 |
+
<!DOCTYPE html>
|
522 |
+
<html lang="en">
|
523 |
+
<head>
|
524 |
+
<meta charset="UTF-8">
|
525 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
526 |
+
<title>Exam Data Analysis Goals Generator</title>
|
527 |
+
<script src="https://d3js.org/d3.v7.min.js"></script>
|
528 |
+
<style>
|
529 |
+
#visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
|
530 |
+
#generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
|
531 |
+
</style>
|
532 |
+
</head>
|
533 |
+
<body>
|
534 |
+
<h1>Exam Data Analysis Goals Generator</h1>
|
535 |
+
<div id="visualization"></div>
|
536 |
+
<div id="generatedGoals"></div>
|
537 |
+
<script>
|
538 |
+
const width = 1200;
|
539 |
+
const height = 800;
|
540 |
+
const goals = [
|
541 |
+
{ id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
|
542 |
+
{ id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
|
543 |
+
{ id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
|
544 |
+
{ id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
|
545 |
+
{ id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
|
546 |
+
// Add more goals here...
|
547 |
+
];
|
548 |
+
const connections = [
|
549 |
+
{ source: 1, target: 2 },
|
550 |
+
{ source: 2, target: 3 },
|
551 |
+
{ source: 3, target: 4 },
|
552 |
+
{ source: 4, target: 5 },
|
553 |
+
// Add more connections here...
|
554 |
+
];
|
555 |
+
const svg = d3.select("#visualization")
|
556 |
+
.append("svg")
|
557 |
+
.attr("width", width)
|
558 |
+
.attr("height", height);
|
559 |
+
const simulation = d3.forceSimulation(goals)
|
560 |
+
.force("link", d3.forceLink(connections).id(d => d.id))
|
561 |
+
.force("charge", d3.forceManyBody().strength(-400))
|
562 |
+
.force("center", d3.forceCenter(width / 2, height / 2));
|
563 |
+
const link = svg.append("g")
|
564 |
+
.selectAll("line")
|
565 |
+
.data(connections)
|
566 |
+
.enter().append("line")
|
567 |
+
.attr("stroke", "#999")
|
568 |
+
.attr("stroke-opacity", 0.6);
|
569 |
+
const node = svg.append("g")
|
570 |
+
.selectAll("circle")
|
571 |
+
.data(goals)
|
572 |
+
.enter().append("circle")
|
573 |
+
.attr("r", 10)
|
574 |
+
.attr("fill", d => d.color || "#69b3a2")
|
575 |
+
.call(d3.drag()
|
576 |
+
.on("start", dragstarted)
|
577 |
+
.on("drag", dragged)
|
578 |
+
.on("end", dragended));
|
579 |
+
const text = svg.append("g")
|
580 |
+
.selectAll("text")
|
581 |
+
.data(goals)
|
582 |
+
.enter().append("text")
|
583 |
+
.text(d => d.name)
|
584 |
+
.attr("font-size", "12px")
|
585 |
+
.attr("dx", 12)
|
586 |
+
.attr("dy", 4);
|
587 |
+
node.on("click", async function(event, d) {
|
588 |
+
const response = await fetch('/generate_goals', {
|
589 |
+
method: 'POST',
|
590 |
+
headers: { 'Content-Type': 'application/json' },
|
591 |
+
body: JSON.stringify({ input_var: d.name })
|
592 |
+
});
|
593 |
+
const data = await response.json();
|
594 |
+
document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
|
595 |
+
});
|
596 |
+
simulation.on("tick", () => {
|
597 |
+
link
|
598 |
+
.attr("x1", d => d.source.x)
|
599 |
+
.attr("y1", d => d.source.y)
|
600 |
+
.attr("x2", d => d.target.x)
|
601 |
+
.attr("y2", d => d.target.y);
|
602 |
+
node
|
603 |
+
.attr("cx", d => d.x)
|
604 |
+
.attr("cy", d => d.y);
|
605 |
+
text
|
606 |
+
.attr("x", d => d.x)
|
607 |
+
.attr("y", d => d.y);
|
608 |
+
});
|
609 |
+
function dragstarted(event) {
|
610 |
+
if (!event.active) simulation.alphaTarget(0.3).restart();
|
611 |
+
event.subject.fx = event.subject.x;
|
612 |
+
event.subject.fy = event.subject.y;
|
613 |
+
}
|
614 |
+
function dragged(event) {
|
615 |
+
event.subject.fx = event.x;
|
616 |
+
event.subject.fy = event.y;
|
617 |
+
}
|
618 |
+
function dragended(event) {
|
619 |
+
if (!event.active) simulation.alphaTarget(0);
|
620 |
+
event.subject.fx = null;
|
621 |
+
event.subject.fy = null;
|
622 |
+
}
|
623 |
+
</script>
|
624 |
+
</body>
|
625 |
+
</html>
|
626 |
+
"""
|
627 |
+
|
628 |
+
class MyHandler(SimpleHTTPRequestHandler):
|
629 |
+
def do_GET(self):
|
630 |
+
self.send_response(200)
|
631 |
+
self.send_header('Content-type', 'text/html')
|
632 |
+
self.end_headers()
|
633 |
+
self.wfile.write(html_content.encode())
|
634 |
+
|
635 |
+
def do_POST(self):
|
636 |
+
if self.path == '/generate_goals':
|
637 |
+
content_length = int(self.headers['Content-Length'])
|
638 |
+
post_data = self.rfile.read(content_length)
|
639 |
+
data = json.loads(post_data.decode('utf-8'))
|
640 |
+
input_var = data['input_var']
|
641 |
+
goals = generate_goals(input_var)
|
642 |
+
|
643 |
+
self.send_response(200)
|
644 |
+
self.send_header('Content-type', 'application/json')
|
645 |
+
self.end_headers()
|
646 |
+
self.wfile.write(json.dumps({'goals': goals}).encode())
|
647 |
+
else:
|
648 |
+
self.send_error(404)
|
649 |
+
|
650 |
+
if __name__ == '__main__':
|
651 |
+
port = 7860
|
652 |
+
server = HTTPServer(('', port), MyHandler)
|
653 |
+
# public_url = ngrok.connect(port).public_url
|
654 |
+
# print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
|
655 |
+
server.serve_forever()
|
656 |
|
657 |
# here
|
658 |
# from http.server import HTTPServer, SimpleHTTPRequestHandler
|