harris1 commited on
Commit
779cbcf
·
verified ·
1 Parent(s): 61ba1ac

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +251 -251
app.py CHANGED
@@ -285,219 +285,12 @@
285
 
286
  # if __name__ == "__main__":
287
  # iface.launch()
288
- from flask import Flask, request, jsonify, render_template_string
289
- import os
290
- from mistralai.client import MistralClient
291
- from mistralai.models.chat_completion import ChatMessage
292
-
293
- app = Flask(__name__)
294
-
295
- # Mistral AI setup
296
- api_key = os.getenv("MISTRAL_API_KEY")
297
- if not api_key:
298
- raise ValueError("MISTRAL_API_KEY environment variable not set")
299
-
300
- model = "mistral-tiny"
301
- client = MistralClient(api_key=api_key)
302
-
303
- def generate_goals(input_var):
304
- messages = [
305
- ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
306
- ]
307
- try:
308
- response = client.chat(model=model, messages=messages)
309
- return response.choices[0].message.content
310
- except Exception as e:
311
- return f"An error occurred: {str(e)}"
312
-
313
- html_content = """
314
- <!DOCTYPE html>
315
- <html lang="en">
316
- <head>
317
- <meta charset="UTF-8">
318
- <meta name="viewport" content="width=device-width, initial-scale=1.0">
319
- <title>Exam Data Analysis Goals Generator</title>
320
- <script src="https://d3js.org/d3.v7.min.js"></script>
321
- <style>
322
- #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
323
- #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
324
- </style>
325
- </head>
326
- <body>
327
- <h1>Exam Data Analysis Goals Generator</h1>
328
- <div id="visualization"></div>
329
- <div id="generatedGoals"></div>
330
- <script>
331
- const width = 1200;
332
- const height = 800;
333
- const goals = [
334
- { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
335
- { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
336
- { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
337
- { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
338
- { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
339
- { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
340
- { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
341
- { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
342
- { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
343
- { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
344
- { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
345
- { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
346
- { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
347
- { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
348
- { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
349
- { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
350
- { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
351
- { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
352
- { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
353
- { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
354
- { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
355
- { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
356
- { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
357
- { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
358
- { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
359
- { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
360
- { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
361
- { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
362
- { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
363
- { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
364
- ];
365
- const connections = [
366
- { source: 1, target: 2 },
367
- { source: 2, target: 3 },
368
- { source: 3, target: 4 },
369
- { source: 4, target: 5 },
370
- { source: 5, target: 7 },
371
- { source: 6, target: 7 },
372
- { source: 7, target: 8 },
373
- { source: 8, target: 9 },
374
- { source: 9, target: 16 },
375
- { source: 10, target: 13 },
376
- { source: 11, target: 12 },
377
- { source: 12, target: 20 },
378
- { source: 13, target: 16 },
379
- { source: 14, target: 21 },
380
- { source: 15, target: 17 },
381
- { source: 16, target: 18 },
382
- { source: 17, target: 19 },
383
- { source: 18, target: 22 },
384
- { source: 19, target: 21 },
385
- { source: 20, target: 29 },
386
- { source: 21, target: 30 },
387
- { source: 22, target: 23 },
388
- { source: 23, target: 25 },
389
- { source: 24, target: 12 },
390
- { source: 25, target: 23 },
391
- { source: 26, target: 15 },
392
- { source: 27, target: 15 },
393
- { source: 28, target: 22 },
394
- { source: 29, target: 23 },
395
- { source: 30, target: 21 },
396
- // Additional connections for more interconnectivity
397
- { source: 1, target: 10 },
398
- { source: 2, target: 6 },
399
- { source: 3, target: 13 },
400
- { source: 4, target: 15 },
401
- { source: 5, target: 28 },
402
- { source: 8, target: 23 },
403
- { source: 11, target: 25 },
404
- { source: 14, target: 30 },
405
- { source: 24, target: 17 },
406
- { source: 26, target: 29 }
407
- ];
408
- const svg = d3.select("#visualization")
409
- .append("svg")
410
- .attr("width", width)
411
- .attr("height", height);
412
- const simulation = d3.forceSimulation(goals)
413
- .force("link", d3.forceLink(connections).id(d => d.id))
414
- .force("charge", d3.forceManyBody().strength(-400))
415
- .force("center", d3.forceCenter(width / 2, height / 2));
416
- const link = svg.append("g")
417
- .selectAll("line")
418
- .data(connections)
419
- .enter().append("line")
420
- .attr("stroke", "#999")
421
- .attr("stroke-opacity", 0.6);
422
- const node = svg.append("g")
423
- .selectAll("circle")
424
- .data(goals)
425
- .enter().append("circle")
426
- .attr("r", 10)
427
- .attr("fill", d => d.color)
428
- .call(d3.drag()
429
- .on("start", dragstarted)
430
- .on("drag", dragged)
431
- .on("end", dragended));
432
- const text = svg.append("g")
433
- .selectAll("text")
434
- .data(goals)
435
- .enter().append("text")
436
- .text(d => d.name)
437
- .attr("font-size", "12px")
438
- .attr("dx", 12)
439
- .attr("dy", 4);
440
- node.on("click", async function(event, d) {
441
- const response = await fetch('/generate_goals', {
442
- method: 'POST',
443
- headers: { 'Content-Type': 'application/json' },
444
- body: JSON.stringify({ input_var: d.name })
445
- });
446
- const data = await response.json();
447
- document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
448
- });
449
- simulation.on("tick", () => {
450
- link
451
- .attr("x1", d => d.source.x)
452
- .attr("y1", d => d.source.y)
453
- .attr("x2", d => d.target.x)
454
- .attr("y2", d => d.target.y);
455
- node
456
- .attr("cx", d => d.x)
457
- .attr("cy", d => d.y);
458
- text
459
- .attr("x", d => d.x)
460
- .attr("y", d => d.y);
461
- });
462
- function dragstarted(event) {
463
- if (!event.active) simulation.alphaTarget(0.3).restart();
464
- event.subject.fx = event.subject.x;
465
- event.subject.fy = event.subject.y;
466
- }
467
- function dragged(event) {
468
- event.subject.fx = event.x;
469
- event.subject.fy = event.y;
470
- }
471
- function dragended(event) {
472
- if (!event.active) simulation.alphaTarget(0);
473
- event.subject.fx = null;
474
- event.subject.fy = null;
475
- }
476
- </script>
477
- </body>
478
- </html>
479
- """
480
-
481
- @app.route('/')
482
- def index():
483
- return render_template_string(html_content)
484
-
485
- @app.route('/generate_goals', methods=['POST'])
486
- def generate_goals_api():
487
- input_var = request.json['input_var']
488
- goals = generate_goals(input_var)
489
- return jsonify({'goals': goals})
490
-
491
- if __name__ == "__main__":
492
- app.run(host='0.0.0.0', port=7860)
493
-
494
- # imp
495
- # from http.server import HTTPServer, SimpleHTTPRequestHandler
496
- # from pyngrok import ngrok
497
  # import os
498
  # from mistralai.client import MistralClient
499
  # from mistralai.models.chat_completion import ChatMessage
500
- # import json
 
501
 
502
  # # Mistral AI setup
503
  # api_key = os.getenv("MISTRAL_API_KEY")
@@ -538,20 +331,80 @@ if __name__ == "__main__":
538
  # const width = 1200;
539
  # const height = 800;
540
  # const goals = [
541
- # { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
542
- # { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
543
- # { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
544
- # { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
545
- # { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
546
- # // Add more goals here...
547
- # ];
548
- # const connections = [
549
- # { source: 1, target: 2 },
550
- # { source: 2, target: 3 },
551
- # { source: 3, target: 4 },
552
- # { source: 4, target: 5 },
553
- # // Add more connections here...
554
- # ];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555
  # const svg = d3.select("#visualization")
556
  # .append("svg")
557
  # .attr("width", width)
@@ -571,7 +424,7 @@ if __name__ == "__main__":
571
  # .data(goals)
572
  # .enter().append("circle")
573
  # .attr("r", 10)
574
- # .attr("fill", d => d.color || "#69b3a2")
575
  # .call(d3.drag()
576
  # .on("start", dragstarted)
577
  # .on("drag", dragged)
@@ -625,34 +478,181 @@ if __name__ == "__main__":
625
  # </html>
626
  # """
627
 
628
- # class MyHandler(SimpleHTTPRequestHandler):
629
- # def do_GET(self):
630
- # self.send_response(200)
631
- # self.send_header('Content-type', 'text/html')
632
- # self.end_headers()
633
- # self.wfile.write(html_content.encode())
634
 
635
- # def do_POST(self):
636
- # if self.path == '/generate_goals':
637
- # content_length = int(self.headers['Content-Length'])
638
- # post_data = self.rfile.read(content_length)
639
- # data = json.loads(post_data.decode('utf-8'))
640
- # input_var = data['input_var']
641
- # goals = generate_goals(input_var)
642
-
643
- # self.send_response(200)
644
- # self.send_header('Content-type', 'application/json')
645
- # self.end_headers()
646
- # self.wfile.write(json.dumps({'goals': goals}).encode())
647
- # else:
648
- # self.send_error(404)
649
 
650
- # if __name__ == '__main__':
651
- # port = 7860
652
- # server = HTTPServer(('', port), MyHandler)
653
- # public_url = ngrok.connect(port).public_url
654
- # print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
655
- # server.serve_forever()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656
 
657
  # here
658
  # from http.server import HTTPServer, SimpleHTTPRequestHandler
 
285
 
286
  # if __name__ == "__main__":
287
  # iface.launch()
288
+ # from flask import Flask, request, jsonify, render_template_string
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  # import os
290
  # from mistralai.client import MistralClient
291
  # from mistralai.models.chat_completion import ChatMessage
292
+
293
+ # app = Flask(__name__)
294
 
295
  # # Mistral AI setup
296
  # api_key = os.getenv("MISTRAL_API_KEY")
 
331
  # const width = 1200;
332
  # const height = 800;
333
  # const goals = [
334
+ # { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
335
+ # { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
336
+ # { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
337
+ # { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
338
+ # { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
339
+ # { id: 6, x: 200, y: 500, name: "Data Filtering", description: "Implement advanced filtering techniques to segment exam data based on various criteria (e.g., demographic info, score ranges) using boolean indexing and query() method in Pandas." },
340
+ # { id: 7, x: 300, y: 600, name: "Reporting Automation", description: "Develop automated reporting systems that use Pandas groupby() and agg() functions to generate summary statistics and performance reports for different exam cohorts." },
341
+ # { id: 8, x: 400, y: 500, name: "Data Visualization", description: "Create interactive dashboards for exam data visualization using Pandas with Plotly or Bokeh, allowing stakeholders to explore results dynamically." },
342
+ # { id: 9, x: 500, y: 600, name: "Time Series Analysis", description: "Implement time series analysis techniques using Pandas datetime functionality to track and forecast exam performance trends over multiple test administrations." },
343
+ # { id: 10, x: 300, y: 400, name: "Data Integration", description: "Develop processes to merge exam data with other relevant datasets (e.g., student information systems, learning management systems) using Pandas merge() and join() operations." },
344
+ # { id: 11, x: 600, y: 300, name: "Performance Optimization", description: "Improve the efficiency of Pandas operations on large exam datasets by utilizing techniques like chunking, multiprocessing, and query optimization." },
345
+ # { id: 12, x: 700, y: 400, name: "Machine Learning Integration", description: "Integrate machine learning models with Pandas for predictive analytics, such as predicting exam success or identifying at-risk students based on historical data." },
346
+ # { id: 13, x: 800, y: 500, name: "Custom Indexing", description: "Implement custom indexing strategies in Pandas to efficiently handle hierarchical exam data structures and improve data access patterns." },
347
+ # { id: 14, x: 900, y: 400, name: "Data Anonymization", description: "Develop Pandas-based workflows to anonymize sensitive exam data, ensuring compliance with privacy regulations while maintaining data utility for analysis." },
348
+ # { id: 15, x: 1000, y: 300, name: "Exam Item Analysis", description: "Create specialized functions using Pandas to perform detailed item analysis, including distractor analysis and reliability calculations for individual exam questions." },
349
+ # { id: 16, x: 600, y: 500, name: "Longitudinal Analysis", description: "Implement Pandas-based methods for tracking student performance across multiple exams over time, identifying learning trends and progress patterns." },
350
+ # { id: 17, x: 700, y: 600, name: "Adaptive Testing Analysis", description: "Develop analysis pipelines using Pandas to evaluate and optimize adaptive testing algorithms, including item selection strategies and scoring methods." },
351
+ # { id: 18, x: 800, y: 700, name: "Exam Equating", description: "Create Pandas workflows to perform exam equating, ensuring comparability of scores across different versions or administrations of an exam." },
352
+ # { id: 19, x: 900, y: 600, name: "Response Time Analysis", description: "Utilize Pandas to analyze exam response times, identifying patterns that may indicate guessing, test-taking strategies, or item difficulty." },
353
+ # { id: 20, x: 1000, y: 500, name: "Collaborative Filtering", description: "Implement collaborative filtering techniques using Pandas to recommend study materials or practice questions based on exam performance patterns." },
354
+ # { id: 21, x: 400, y: 700, name: "Exam Fraud Detection", description: "Develop anomaly detection algorithms using Pandas to identify potential exam fraud or unusual response patterns in large-scale testing programs." },
355
+ # { id: 22, x: 500, y: 800, name: "Standard Setting", description: "Create Pandas-based tools to assist in standard setting processes, analyzing expert judgments and examinee data to establish performance standards." },
356
+ # { id: 23, x: 600, y: 700, name: "Automated Reporting", description: "Implement automated report generation using Pandas and libraries like Jinja2 to create customized, data-driven exam reports for various stakeholders." },
357
+ # { id: 24, x: 700, y: 800, name: "Cross-validation", description: "Develop cross-validation frameworks using Pandas to assess the reliability and generalizability of predictive models in educational assessment contexts." },
358
+ # { id: 25, x: 800, y: 300, name: "API Integration", description: "Create Pandas-based interfaces to integrate exam data analysis workflows with external APIs, facilitating real-time data exchange and reporting." },
359
+ # { id: 26, x: 900, y: 200, name: "Natural Language Processing", description: "Implement NLP techniques using Pandas and libraries like NLTK to analyze free-text responses in exams, enabling automated scoring and content analysis." },
360
+ # { id: 27, x: 1000, y: 100, name: "Exam Blueprint Analysis", description: "Develop Pandas workflows to analyze exam blueprints, ensuring content coverage and alignment with learning objectives across multiple test forms." },
361
+ # { id: 28, x: 100, y: 600, name: "Differential Item Functioning", description: "Implement statistical methods using Pandas to detect and analyze differential item functioning (DIF) in exams, ensuring fairness across different demographic groups." },
362
+ # { id: 29, x: 200, y: 700, name: "Automated Feedback Generation", description: "Create Pandas-based systems to generate personalized feedback for test-takers based on their exam performance and identified areas for improvement." },
363
+ # { id: 30, x: 300, y: 800, name: "Exam Security Analysis", description: "Develop analytical tools using Pandas to assess and enhance exam security, including analysis of item exposure rates and detection of potential security breaches." }
364
+ # ];
365
+ # const connections = [
366
+ # { source: 1, target: 2 },
367
+ # { source: 2, target: 3 },
368
+ # { source: 3, target: 4 },
369
+ # { source: 4, target: 5 },
370
+ # { source: 5, target: 7 },
371
+ # { source: 6, target: 7 },
372
+ # { source: 7, target: 8 },
373
+ # { source: 8, target: 9 },
374
+ # { source: 9, target: 16 },
375
+ # { source: 10, target: 13 },
376
+ # { source: 11, target: 12 },
377
+ # { source: 12, target: 20 },
378
+ # { source: 13, target: 16 },
379
+ # { source: 14, target: 21 },
380
+ # { source: 15, target: 17 },
381
+ # { source: 16, target: 18 },
382
+ # { source: 17, target: 19 },
383
+ # { source: 18, target: 22 },
384
+ # { source: 19, target: 21 },
385
+ # { source: 20, target: 29 },
386
+ # { source: 21, target: 30 },
387
+ # { source: 22, target: 23 },
388
+ # { source: 23, target: 25 },
389
+ # { source: 24, target: 12 },
390
+ # { source: 25, target: 23 },
391
+ # { source: 26, target: 15 },
392
+ # { source: 27, target: 15 },
393
+ # { source: 28, target: 22 },
394
+ # { source: 29, target: 23 },
395
+ # { source: 30, target: 21 },
396
+ # // Additional connections for more interconnectivity
397
+ # { source: 1, target: 10 },
398
+ # { source: 2, target: 6 },
399
+ # { source: 3, target: 13 },
400
+ # { source: 4, target: 15 },
401
+ # { source: 5, target: 28 },
402
+ # { source: 8, target: 23 },
403
+ # { source: 11, target: 25 },
404
+ # { source: 14, target: 30 },
405
+ # { source: 24, target: 17 },
406
+ # { source: 26, target: 29 }
407
+ # ];
408
  # const svg = d3.select("#visualization")
409
  # .append("svg")
410
  # .attr("width", width)
 
424
  # .data(goals)
425
  # .enter().append("circle")
426
  # .attr("r", 10)
427
+ # .attr("fill", d => d.color)
428
  # .call(d3.drag()
429
  # .on("start", dragstarted)
430
  # .on("drag", dragged)
 
478
  # </html>
479
  # """
480
 
481
+ # @app.route('/')
482
+ # def index():
483
+ # return render_template_string(html_content)
 
 
 
484
 
485
+ # @app.route('/generate_goals', methods=['POST'])
486
+ # def generate_goals_api():
487
+ # input_var = request.json['input_var']
488
+ # goals = generate_goals(input_var)
489
+ # return jsonify({'goals': goals})
 
 
 
 
 
 
 
 
 
490
 
491
+ # if __name__ == "__main__":
492
+ # app.run(host='0.0.0.0', port=7860)
493
+
494
+ # imp
495
+ from http.server import HTTPServer, SimpleHTTPRequestHandler
496
+ # from pyngrok import ngrok
497
+ import os
498
+ from mistralai.client import MistralClient
499
+ from mistralai.models.chat_completion import ChatMessage
500
+ import json
501
+
502
+ # Mistral AI setup
503
+ api_key = os.getenv("MISTRAL_API_KEY")
504
+ if not api_key:
505
+ raise ValueError("MISTRAL_API_KEY environment variable not set")
506
+
507
+ model = "mistral-tiny"
508
+ client = MistralClient(api_key=api_key)
509
+
510
+ def generate_goals(input_var):
511
+ messages = [
512
+ ChatMessage(role="user", content=f"Generate 5 specific, industry relevant goals for {input_var} using Python and Pandas in exam data analysis. Each goal should include a brief name and a one-sentence description of the task or skill.")
513
+ ]
514
+ try:
515
+ response = client.chat(model=model, messages=messages)
516
+ return response.choices[0].message.content
517
+ except Exception as e:
518
+ return f"An error occurred: {str(e)}"
519
+
520
+ html_content = """
521
+ <!DOCTYPE html>
522
+ <html lang="en">
523
+ <head>
524
+ <meta charset="UTF-8">
525
+ <meta name="viewport" content="width=device-width, initial-scale=1.0">
526
+ <title>Exam Data Analysis Goals Generator</title>
527
+ <script src="https://d3js.org/d3.v7.min.js"></script>
528
+ <style>
529
+ #visualization { width: 100%; height: 600px; border: 1px solid #ccc; }
530
+ #generatedGoals { margin-top: 20px; padding: 10px; border: 1px solid #ccc; }
531
+ </style>
532
+ </head>
533
+ <body>
534
+ <h1>Exam Data Analysis Goals Generator</h1>
535
+ <div id="visualization"></div>
536
+ <div id="generatedGoals"></div>
537
+ <script>
538
+ const width = 1200;
539
+ const height = 800;
540
+ const goals = [
541
+ { id: 1, x: 100, y: 400, name: "Automate Data Import", description: "Develop scripts to automate exam data extraction from various sources (CSV, Excel, databases) using Pandas read_* functions." },
542
+ { id: 2, x: 200, y: 300, name: "Data Cleaning", description: "Implement robust data cleaning processes to handle missing values, outliers, and inconsistencies in exam data using Pandas methods like dropna(), fillna(), and apply()." },
543
+ { id: 3, x: 300, y: 200, name: "Data Transformation", description: "Utilize Pandas for complex data transformations such as pivoting exam results, melting question-wise scores, and creating derived features for analysis." },
544
+ { id: 4, x: 400, y: 300, name: "Statistical Analysis", description: "Develop functions to automate statistical analysis of exam results, including descriptive statistics, hypothesis testing, and correlation analysis using Pandas and SciPy." },
545
+ { id: 5, x: 500, y: 400, name: "Performance Metrics", description: "Create custom functions to calculate industry-standard exam performance metrics like item difficulty, discrimination index, and reliability coefficients using Pandas operations." },
546
+ // Add more goals here...
547
+ ];
548
+ const connections = [
549
+ { source: 1, target: 2 },
550
+ { source: 2, target: 3 },
551
+ { source: 3, target: 4 },
552
+ { source: 4, target: 5 },
553
+ // Add more connections here...
554
+ ];
555
+ const svg = d3.select("#visualization")
556
+ .append("svg")
557
+ .attr("width", width)
558
+ .attr("height", height);
559
+ const simulation = d3.forceSimulation(goals)
560
+ .force("link", d3.forceLink(connections).id(d => d.id))
561
+ .force("charge", d3.forceManyBody().strength(-400))
562
+ .force("center", d3.forceCenter(width / 2, height / 2));
563
+ const link = svg.append("g")
564
+ .selectAll("line")
565
+ .data(connections)
566
+ .enter().append("line")
567
+ .attr("stroke", "#999")
568
+ .attr("stroke-opacity", 0.6);
569
+ const node = svg.append("g")
570
+ .selectAll("circle")
571
+ .data(goals)
572
+ .enter().append("circle")
573
+ .attr("r", 10)
574
+ .attr("fill", d => d.color || "#69b3a2")
575
+ .call(d3.drag()
576
+ .on("start", dragstarted)
577
+ .on("drag", dragged)
578
+ .on("end", dragended));
579
+ const text = svg.append("g")
580
+ .selectAll("text")
581
+ .data(goals)
582
+ .enter().append("text")
583
+ .text(d => d.name)
584
+ .attr("font-size", "12px")
585
+ .attr("dx", 12)
586
+ .attr("dy", 4);
587
+ node.on("click", async function(event, d) {
588
+ const response = await fetch('/generate_goals', {
589
+ method: 'POST',
590
+ headers: { 'Content-Type': 'application/json' },
591
+ body: JSON.stringify({ input_var: d.name })
592
+ });
593
+ const data = await response.json();
594
+ document.getElementById("generatedGoals").innerHTML = `<h2>Generated Goals for ${d.name}</h2><pre>${data.goals}</pre>`;
595
+ });
596
+ simulation.on("tick", () => {
597
+ link
598
+ .attr("x1", d => d.source.x)
599
+ .attr("y1", d => d.source.y)
600
+ .attr("x2", d => d.target.x)
601
+ .attr("y2", d => d.target.y);
602
+ node
603
+ .attr("cx", d => d.x)
604
+ .attr("cy", d => d.y);
605
+ text
606
+ .attr("x", d => d.x)
607
+ .attr("y", d => d.y);
608
+ });
609
+ function dragstarted(event) {
610
+ if (!event.active) simulation.alphaTarget(0.3).restart();
611
+ event.subject.fx = event.subject.x;
612
+ event.subject.fy = event.subject.y;
613
+ }
614
+ function dragged(event) {
615
+ event.subject.fx = event.x;
616
+ event.subject.fy = event.y;
617
+ }
618
+ function dragended(event) {
619
+ if (!event.active) simulation.alphaTarget(0);
620
+ event.subject.fx = null;
621
+ event.subject.fy = null;
622
+ }
623
+ </script>
624
+ </body>
625
+ </html>
626
+ """
627
+
628
+ class MyHandler(SimpleHTTPRequestHandler):
629
+ def do_GET(self):
630
+ self.send_response(200)
631
+ self.send_header('Content-type', 'text/html')
632
+ self.end_headers()
633
+ self.wfile.write(html_content.encode())
634
+
635
+ def do_POST(self):
636
+ if self.path == '/generate_goals':
637
+ content_length = int(self.headers['Content-Length'])
638
+ post_data = self.rfile.read(content_length)
639
+ data = json.loads(post_data.decode('utf-8'))
640
+ input_var = data['input_var']
641
+ goals = generate_goals(input_var)
642
+
643
+ self.send_response(200)
644
+ self.send_header('Content-type', 'application/json')
645
+ self.end_headers()
646
+ self.wfile.write(json.dumps({'goals': goals}).encode())
647
+ else:
648
+ self.send_error(404)
649
+
650
+ if __name__ == '__main__':
651
+ port = 7860
652
+ server = HTTPServer(('', port), MyHandler)
653
+ # public_url = ngrok.connect(port).public_url
654
+ # print(f" * ngrok tunnel \"{public_url}\" -> \"http://127.0.0.1:{port}\"")
655
+ server.serve_forever()
656
 
657
  # here
658
  # from http.server import HTTPServer, SimpleHTTPRequestHandler