Spaces:
Sleeping
Sleeping
Upload 2 files
Browse files- app.py +140 -220
- openai_client.py +148 -0
app.py
CHANGED
@@ -1,227 +1,147 @@
|
|
1 |
-
from dotenv import load_dotenv
|
2 |
-
import os
|
3 |
-
from docx import Document
|
4 |
-
from llama_index.llms.together import TogetherLLM
|
5 |
-
from llama_index.core.llms import ChatMessage, MessageRole
|
6 |
-
from Bio import Entrez
|
7 |
-
import ssl
|
8 |
-
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
9 |
import streamlit as st
|
10 |
-
from
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
def search_pubmed(query: str) -> Optional[List[str]]:
|
19 |
-
"""
|
20 |
-
Searches PubMed for a given query and returns a list of formatted results
|
21 |
-
(or None if no results are found).
|
22 |
-
"""
|
23 |
-
Entrez.email = "[email protected]" # Replace with your email
|
24 |
-
|
25 |
-
try:
|
26 |
-
ssl._create_default_https_context = ssl._create_unverified_context
|
27 |
-
|
28 |
-
handle = Entrez.esearch(db="pubmed", term=query, retmax=3)
|
29 |
-
record = Entrez.read(handle)
|
30 |
-
id_list = record["IdList"]
|
31 |
-
|
32 |
-
if not id_list:
|
33 |
-
return None
|
34 |
-
|
35 |
-
handle = Entrez.efetch(db="pubmed", id=id_list, retmode="xml")
|
36 |
-
articles = Entrez.read(handle)
|
37 |
-
|
38 |
-
results = []
|
39 |
-
for article in articles['PubmedArticle']:
|
40 |
-
try:
|
41 |
-
medline_citation = article['MedlineCitation']
|
42 |
-
article_data = medline_citation['Article']
|
43 |
-
title = article_data['ArticleTitle']
|
44 |
-
abstract = article_data.get('Abstract', {}).get('AbstractText', [""])[0]
|
45 |
-
|
46 |
-
result = f"**Title:** {title}\n**Abstract:** {abstract}\n"
|
47 |
-
result += f"**Link:** https://pubmed.ncbi.nlm.nih.gov/{medline_citation['PMID']} \n\n"
|
48 |
-
results.append(result)
|
49 |
-
except KeyError as e:
|
50 |
-
print(f"Error parsing article: {article}, Error: {e}")
|
51 |
-
|
52 |
-
return results
|
53 |
-
|
54 |
-
except Exception as e:
|
55 |
-
print(f"Error accessing PubMed: {e}")
|
56 |
-
return None
|
57 |
-
|
58 |
-
def chat_with_pubmed(article_text, article_link):
|
59 |
-
"""
|
60 |
-
Engages in a chat-like interaction with a PubMed article using TogetherLLM.
|
61 |
-
"""
|
62 |
-
try:
|
63 |
-
llm = TogetherLLM(model="QWEN/QWEN1.5-14B-CHAT", api_key=os.environ['TOGETHER_API'])
|
64 |
-
messages = [
|
65 |
-
ChatMessage(role=MessageRole.SYSTEM, content="You are a helpful AI assistant summarizing and answering questions about the following medical research article: " + article_link),
|
66 |
-
ChatMessage(role=MessageRole.USER, content=article_text)
|
67 |
-
]
|
68 |
-
response = llm.chat(messages)
|
69 |
-
return str(response) if response else "I'm sorry, I couldn't generate a summary for this article."
|
70 |
-
except Exception as e:
|
71 |
-
print(f"Error in chat_with_pubmed: {e}")
|
72 |
-
return "An error occurred while generating a summary."
|
73 |
-
|
74 |
-
def search_web(query: str, num_results: int = 3) -> Optional[List[str]]:
|
75 |
-
"""
|
76 |
-
Searches the web using the Google Search API and returns a list of formatted results
|
77 |
-
(or None if no results are found).
|
78 |
-
"""
|
79 |
-
try:
|
80 |
-
service = build("customsearch", "v1", developerKey=os.environ["GOOGLE_SEARCH_API_KEY"])
|
81 |
-
|
82 |
-
# Execute the search request
|
83 |
-
res = service.cse().list(q=query, cx="e31a5857f45ef4d2a", num=num_results).execute()
|
84 |
-
|
85 |
-
if "items" not in res:
|
86 |
-
return None
|
87 |
-
|
88 |
-
results = []
|
89 |
-
for item in res["items"]:
|
90 |
-
title = item["title"]
|
91 |
-
link = item["link"]
|
92 |
-
snippet = item["snippet"]
|
93 |
-
result = f"**Title:** {title}\n**Link:** {link} \n**Snippet:** {snippet}\n\n"
|
94 |
-
results.append(result)
|
95 |
-
|
96 |
-
return results
|
97 |
-
|
98 |
-
except Exception as e:
|
99 |
-
print(f"Error performing web search: {e}")
|
100 |
-
return None
|
101 |
-
|
102 |
-
|
103 |
-
from together import Together
|
104 |
-
def medmind_chatbot(user_input, chat_history=None):
|
105 |
-
"""
|
106 |
-
Processes user input, interacts with various resources, and generates a response.
|
107 |
-
Handles potential errors, maintains chat history,
|
108 |
-
"""
|
109 |
-
if chat_history is None:
|
110 |
-
chat_history = []
|
111 |
-
|
112 |
-
response_parts = [] # Collect responses from different sources
|
113 |
-
final_response = "";
|
114 |
-
|
115 |
-
try:
|
116 |
-
# PubMed Search and Chat
|
117 |
-
pubmed_results = search_pubmed(user_input)
|
118 |
-
if pubmed_results:
|
119 |
-
for article_text in pubmed_results:
|
120 |
-
title, abstract, link = article_text.split("\n")[:3]
|
121 |
-
# print(article_text)
|
122 |
-
response_parts.append(f"{title}\n{abstract}\n{link}\n")
|
123 |
-
else:
|
124 |
-
response_parts.append("No relevant PubMed articles found.")
|
125 |
-
|
126 |
-
# Web Search
|
127 |
-
web_results = search_web(user_input)
|
128 |
-
if web_results:
|
129 |
-
response_parts.append("\n\n**Web Search Results:**")
|
130 |
-
response_parts.extend(web_results)
|
131 |
-
else:
|
132 |
-
response_parts.append("No relevant web search results found.")
|
133 |
-
|
134 |
-
# Combine response parts into a single string
|
135 |
-
response_text = "\n\n".join(response_parts)
|
136 |
-
|
137 |
-
prompt = f"""You are a Health Assistant AI designed to provide detailed responses to health-related questions.
|
138 |
-
Based on the information retrieved from the PubMed and Web Search below, answer the user's query appropriately.
|
139 |
-
|
140 |
-
- If the user's query is health-related, provide a detailed and helpful response based on the retrieved information. Or if there is
|
141 |
-
some previous conversation then answer the health by seeing the previous conversation also.
|
142 |
-
- If the query is a general greeting (e.g., 'Hello', 'Hi'), respond as a friendly assistant.
|
143 |
-
- If the query is irrelevant or unrelated to health, respond with: 'I am a health assistant. Please ask only health-related questions.'
|
144 |
-
- Don't mention in response that where you reterived the information.
|
145 |
-
Previous Conversation:
|
146 |
-
{chat_history}
|
147 |
-
|
148 |
-
User's Query: {user_input}
|
149 |
-
|
150 |
-
Information retrieved from PubMed and Web Search:
|
151 |
-
{response_text}
|
152 |
-
|
153 |
-
Your response:"""
|
154 |
-
|
155 |
-
client = Together(api_key=os.environ.get('TOGETHER_API'))
|
156 |
-
|
157 |
-
response = client.chat.completions.create(
|
158 |
-
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
159 |
-
messages=[{"role": "user", "content": prompt}],
|
160 |
-
)
|
161 |
-
|
162 |
-
final_response = response.choices[0].message.content
|
163 |
-
|
164 |
-
except Exception as e:
|
165 |
-
print(f"Error in chatbot: {e}")
|
166 |
-
response_text = "An error occurred. Please try again later."
|
167 |
-
|
168 |
-
chat_history.append((user_input, final_response))
|
169 |
-
return final_response, chat_history
|
170 |
-
|
171 |
-
medmind_chatbot("What are the symptoms of COVID-19?")
|
172 |
-
|
173 |
-
import gradio as gr
|
174 |
-
|
175 |
-
def show_info_popup():
|
176 |
-
info = """
|
177 |
-
**HealthHive is an AI-powered chatbot designed to assist with medical information.**
|
178 |
-
...
|
179 |
-
"""
|
180 |
-
return info
|
181 |
|
182 |
|
183 |
def main():
|
184 |
-
|
185 |
-
with
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
if __name__ == "__main__":
|
226 |
main()
|
227 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
from openai_client import (
|
3 |
+
get_code_review_response,
|
4 |
+
refactor_code,
|
5 |
+
code_feedback,
|
6 |
+
suggest_best_practices,
|
7 |
+
remove_code_errors,
|
8 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
|
11 |
def main():
|
12 |
+
st.title("CodeMentor - (AI-Enhanced Code Collaboration Tool)")
|
13 |
+
st.subheader("Collaborate, Refactor, and Optimize with AI.")
|
14 |
+
st.write(
|
15 |
+
"A smart tool for distributed teams to automate code reviews, refactor efficiently, and get real-time AI-driven feedback."
|
16 |
+
)
|
17 |
+
|
18 |
+
# Instructions
|
19 |
+
st.write(
|
20 |
+
"Upload a file or paste your code below to get an AI-generated code review."
|
21 |
+
)
|
22 |
+
|
23 |
+
# Input Methods: File Upload or Text Area
|
24 |
+
uploaded_file = st.file_uploader(
|
25 |
+
"Upload a code file (Max 500 lines)", type=["py", "js", "txt"]
|
26 |
+
)
|
27 |
+
code_input = st.text_area("Or paste your code here (Max 1000 words)", height=300)
|
28 |
+
|
29 |
+
# Limit input size for code
|
30 |
+
if uploaded_file:
|
31 |
+
code = uploaded_file.read().decode("utf-8")
|
32 |
+
if len(code.splitlines()) > 500:
|
33 |
+
st.error(
|
34 |
+
"File is too large! Please upload a file with a maximum of 500 lines."
|
35 |
+
)
|
36 |
+
code = None # Reset code if it's too large
|
37 |
+
else:
|
38 |
+
st.success(f"File uploaded: {uploaded_file.name}")
|
39 |
+
elif code_input:
|
40 |
+
code = code_input
|
41 |
+
if len(code.split()) > 1000:
|
42 |
+
st.error("Code exceeds 1000 words! Please shorten your code.")
|
43 |
+
code = None # Reset code if it's too large
|
44 |
+
else:
|
45 |
+
code = None
|
46 |
+
|
47 |
+
# Button to trigger code review
|
48 |
+
if st.button("Get Code Review") and code:
|
49 |
+
with st.spinner("Processing..."):
|
50 |
+
# Call the OpenAI API to get code review
|
51 |
+
review = get_code_review_response(code)
|
52 |
+
st.subheader("Code Review Results:")
|
53 |
+
st.write(review)
|
54 |
+
|
55 |
+
# Provide download option
|
56 |
+
st.download_button(
|
57 |
+
label="Download Code Review",
|
58 |
+
data=review,
|
59 |
+
file_name="code_review.txt",
|
60 |
+
mime="text/plain",
|
61 |
+
)
|
62 |
+
st.success("You can download the code review as code_review.txt")
|
63 |
+
|
64 |
+
# Button to trigger code refactoring
|
65 |
+
if st.button("Refactor Code") and code:
|
66 |
+
with st.spinner("Refactoring your code..."):
|
67 |
+
refactored_code = refactor_code(code)
|
68 |
+
st.subheader("Refactored Code:")
|
69 |
+
st.write(refactored_code)
|
70 |
+
|
71 |
+
# Provide download option for refactored code
|
72 |
+
st.download_button(
|
73 |
+
label="Download Refactored Code",
|
74 |
+
data=refactored_code,
|
75 |
+
file_name="refactored_code.txt",
|
76 |
+
mime="text/plain",
|
77 |
+
)
|
78 |
+
st.success("You can download the refactored code as refactored_code.txt")
|
79 |
+
|
80 |
+
# Button to trigger code feedback
|
81 |
+
if st.button("Get Code Feedback") and code:
|
82 |
+
with st.spinner("Getting feedback on your code..."):
|
83 |
+
feedback = code_feedback(code)
|
84 |
+
st.subheader("Code Feedback:")
|
85 |
+
st.write(feedback)
|
86 |
+
|
87 |
+
# Ensure feedback is a string for download
|
88 |
+
feedback_text = feedback if isinstance(feedback, str) else str(feedback)
|
89 |
+
|
90 |
+
# Provide download option for code feedback
|
91 |
+
st.download_button(
|
92 |
+
label="Download Code Feedback",
|
93 |
+
data=feedback_text, # Use the extracted string here
|
94 |
+
file_name="code_feedback.txt",
|
95 |
+
mime="text/plain",
|
96 |
+
)
|
97 |
+
st.success("You can download the code feedback as code_feedback.txt")
|
98 |
+
|
99 |
+
# Add button to suggest best practices
|
100 |
+
if st.button("Suggest Best Practices") and code:
|
101 |
+
with st.spinner("Getting best practices..."):
|
102 |
+
best_practices = suggest_best_practices(code)
|
103 |
+
st.subheader("Best Practices Suggestions:")
|
104 |
+
st.write(best_practices)
|
105 |
+
|
106 |
+
# Provide download option for best practices suggestions
|
107 |
+
best_practices_text = (
|
108 |
+
best_practices
|
109 |
+
if isinstance(best_practices, str)
|
110 |
+
else str(best_practices)
|
111 |
+
)
|
112 |
+
st.download_button(
|
113 |
+
label="Download Best Practices Suggestions",
|
114 |
+
data=best_practices_text,
|
115 |
+
file_name="best_practices.txt",
|
116 |
+
mime="text/plain",
|
117 |
+
)
|
118 |
+
st.success(
|
119 |
+
"You can download the best practices suggestions as best_practices.txt"
|
120 |
+
)
|
121 |
+
|
122 |
+
# Button to trigger error removal
|
123 |
+
if st.button("Remove Code Errors") and code:
|
124 |
+
with st.spinner("Removing errors from your code..."):
|
125 |
+
error_removal_suggestions = remove_code_errors(code)
|
126 |
+
st.subheader("Error Removal Suggestions:")
|
127 |
+
st.write(error_removal_suggestions)
|
128 |
+
|
129 |
+
# Provide download option for error removal suggestions
|
130 |
+
error_removal_text = (
|
131 |
+
error_removal_suggestions
|
132 |
+
if isinstance(error_removal_suggestions, str)
|
133 |
+
else str(error_removal_suggestions)
|
134 |
+
)
|
135 |
+
st.download_button(
|
136 |
+
label="Download Error Removal Suggestions",
|
137 |
+
data=error_removal_text,
|
138 |
+
file_name="error_removal_suggestions.txt",
|
139 |
+
mime="text/plain",
|
140 |
+
)
|
141 |
+
st.success(
|
142 |
+
"You can download the error removal suggestions as error_removal_suggestions.txt"
|
143 |
+
)
|
144 |
+
|
145 |
|
146 |
if __name__ == "__main__":
|
147 |
main()
|
|
openai_client.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from openai import OpenAI
|
4 |
+
import anthropic
|
5 |
+
|
6 |
+
# Load environment variables from .env file
|
7 |
+
load_dotenv()
|
8 |
+
|
9 |
+
client = OpenAI(
|
10 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
11 |
+
base_url=os.getenv("OPENAI_API_BASE"), # Uncomment if using a custom base URL
|
12 |
+
)
|
13 |
+
|
14 |
+
|
15 |
+
# Function to get GPT-4o Mini response
|
16 |
+
def get_code_review_response(prompt, max_tokens=1000):
|
17 |
+
try:
|
18 |
+
response = client.chat.completions.create(
|
19 |
+
model="gpt-4o-mini",
|
20 |
+
messages=[
|
21 |
+
{
|
22 |
+
"role": "system",
|
23 |
+
"content": "You are an AI assistant who helps users in code reviews by deep thinking in points max 5-6 point shortly.",
|
24 |
+
},
|
25 |
+
{"role": "user", "content": prompt},
|
26 |
+
],
|
27 |
+
max_tokens=max_tokens,
|
28 |
+
)
|
29 |
+
return response.choices[0].message.content
|
30 |
+
except Exception as e:
|
31 |
+
return "Sorry, an error occurred while generating your idea. Please try again later."
|
32 |
+
|
33 |
+
|
34 |
+
# Function to refactor code
|
35 |
+
def refactor_code(code_snippet):
|
36 |
+
try:
|
37 |
+
response = client.chat.completions.create(
|
38 |
+
model="gpt-4o-2024-08-06",
|
39 |
+
messages=[
|
40 |
+
{
|
41 |
+
"role": "system",
|
42 |
+
"content": "You are an expert code refactoring assistant.",
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": f"Refactor the following code. Do not provide any explanation or comments, just return the refactored code.\n{code_snippet}",
|
47 |
+
},
|
48 |
+
],
|
49 |
+
)
|
50 |
+
refactored_code = response.choices[0].message.content
|
51 |
+
return refactored_code
|
52 |
+
except Exception as e:
|
53 |
+
return "Sorry, an error occurred while refactoring your code. Please try again later."
|
54 |
+
|
55 |
+
|
56 |
+
# Initialize the Anthropic client
|
57 |
+
anthropic_client = anthropic.Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY"))
|
58 |
+
|
59 |
+
|
60 |
+
# Function to get feedback on code using Anthropic
|
61 |
+
def code_feedback(code_snippet):
|
62 |
+
try:
|
63 |
+
response = anthropic_client.messages.create(
|
64 |
+
model="claude-3-5-sonnet-20240620",
|
65 |
+
max_tokens=1024,
|
66 |
+
messages=[
|
67 |
+
{
|
68 |
+
"role": "user",
|
69 |
+
"content": f"Please provide feedback on the given code, don't refactor the code:\n{code_snippet}",
|
70 |
+
},
|
71 |
+
],
|
72 |
+
)
|
73 |
+
|
74 |
+
# Extract feedback text from the response
|
75 |
+
feedback = response.text if hasattr(response, "text") else str(response)
|
76 |
+
|
77 |
+
# Check if feedback is a Message object and extract text if necessary
|
78 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
79 |
+
feedback = "\n\n".join(
|
80 |
+
[
|
81 |
+
text_block.text
|
82 |
+
for text_block in response.content
|
83 |
+
if hasattr(text_block, "text")
|
84 |
+
]
|
85 |
+
)
|
86 |
+
|
87 |
+
return feedback
|
88 |
+
|
89 |
+
except Exception as e:
|
90 |
+
return "Sorry, an error occurred while getting feedback on your code. Please try again later."
|
91 |
+
|
92 |
+
|
93 |
+
# Function to suggest best coding practices based on given code
|
94 |
+
def suggest_best_practices(code_snippet):
|
95 |
+
try:
|
96 |
+
response = anthropic_client.messages.create(
|
97 |
+
model="claude-3-5-sonnet-20240620",
|
98 |
+
max_tokens=1024,
|
99 |
+
messages=[
|
100 |
+
{
|
101 |
+
"role": "user",
|
102 |
+
"content": (
|
103 |
+
f"Based on the following code, suggest best practices max 5-6 point shortly"
|
104 |
+
f"for coding patterns that align with industry standards: \n{code_snippet}"
|
105 |
+
),
|
106 |
+
},
|
107 |
+
],
|
108 |
+
)
|
109 |
+
|
110 |
+
# Extract suggestions from the response
|
111 |
+
best_practices = response.text if hasattr(response, "text") else str(response)
|
112 |
+
|
113 |
+
# Check if the feedback is a Message object and extract text if necessary
|
114 |
+
if hasattr(response, "content") and isinstance(response.content, list):
|
115 |
+
best_practices = "\n\n".join(
|
116 |
+
[
|
117 |
+
text_block.text
|
118 |
+
for text_block in response.content
|
119 |
+
if hasattr(text_block, "text")
|
120 |
+
]
|
121 |
+
)
|
122 |
+
|
123 |
+
return best_practices
|
124 |
+
|
125 |
+
except Exception as e:
|
126 |
+
return "Sorry, an error occurred while suggesting best practices. Please try again later."
|
127 |
+
|
128 |
+
|
129 |
+
# Function to remove code errors
|
130 |
+
def remove_code_errors(code_snippet):
|
131 |
+
try:
|
132 |
+
response = client.chat.completions.create(
|
133 |
+
model="gpt-4o-mini",
|
134 |
+
messages=[
|
135 |
+
{
|
136 |
+
"role": "system",
|
137 |
+
"content": "You are an expert in debugging code. Provide concise suggestions to remove errors from the following code snippet.",
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"role": "user",
|
141 |
+
"content": f"Identify and suggest fixes for errors in the following code:\n{code_snippet}",
|
142 |
+
},
|
143 |
+
],
|
144 |
+
)
|
145 |
+
error_removal_suggestions = response.choices[0].message.content
|
146 |
+
return error_removal_suggestions
|
147 |
+
except Exception as e:
|
148 |
+
return "Sorry, an error occurred while removing code errors. Please try again later."
|