File size: 1,448 Bytes
85f8119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff3d29a
 
 
 
85f8119
ff3d29a
85f8119
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Install the necessary packages
# pip install accelerate transformers fastapi pydantic torch

from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
from pydantic import BaseModel
from fastapi import FastAPI
# Import the required library
from transformers import pipeline
# Load the tokenizer and model

# Initialize the FastAPI app
app = FastAPI(docs_url="/")

# Define the request model
class RequestModel(BaseModel):
    input: str

# Define a greeting endpoint
@app.get("/")
def greet_json():
    return {"message": "working..."}

# Define the text generation endpoint
@app.post("/generatetext")
def get_response(request: RequestModel):
    # Define the task and model
	task = "text-generation"
	model_name = "gpt2"

	# Define the input text, maximum output length, and the number of return sequences
	input_text = "he draw to the town "
	max_output_length = 50
	num_of_return_sequences = 1

	# Initialize the text generation pipeline
	text_generator = pipeline(
		task,
		model=model_name
	)

	# Generate text sequences
	generated_texts = text_generator(
		input_text,
		max_length=max_output_length,
		num_return_sequences=num_of_return_sequences
	)
	
	# Print the generated text sequences
	for i, text in enumerate(generated_texts):
		print(f"Generated Text {1}: {text['generated_text']}")

    return {"generated_text": text['generated_text']}

# To run the FastAPI app, use the command: uvicorn <filename>:app --reload