Spaces:
Runtime error
Runtime error
from threading import Thread | |
from typing import Iterator | |
#import torch | |
from transformers.utils import logging | |
from ctransformers import AutoModelForCausalLM | |
from transformers import TextIteratorStreamer, AutoTokenizer | |
logging.set_verbosity_info() | |
logger = logging.get_logger("transformers") | |
config = {"max_new_tokens": 256, "repetition_penalty": 1.1, | |
"temperature": 0.1, "stream": True} | |
model_id = "TheBloke/Llama-2-7B-Chat-GGML" | |
device = "cpu" | |
model = AutoModelForCausalLM.from_pretrained(model_id, model_type="llama", lib="avx2", hf=True) | |
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf") | |
def get_prompt(message: str, chat_history: list[tuple[str, str]], | |
system_prompt: str) -> str: | |
logger.info("get_prompt chat_history=%s",chat_history) | |
logger.info("get_prompt system_prompt=%s",system_prompt) | |
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n'] | |
logger.info("texts=%s",texts) | |
# The first user input is _not_ stripped | |
do_strip = False | |
for user_input, response in chat_history: | |
user_input = user_input.strip() if do_strip else user_input | |
do_strip = True | |
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ') | |
message = message.strip() if do_strip else message | |
logger.info("get_prompt message=%s",message) | |
texts.append(f'{message} [/INST]') | |
logger.info("get_prompt final texts=%s",texts) | |
return ''.join(texts) | |
def get_input_token_length(message: str, chat_history: list[tuple[str, str]], system_prompt: str) -> int: | |
logger.info("get_input_token_length=%s",message) | |
prompt = get_prompt(message, chat_history, system_prompt) | |
logger.info("prompt=%s",prompt) | |
input_ids = tokenizer([prompt], return_tensors='np', add_special_tokens=False)['input_ids'] | |
logger.info("input_ids=%s",input_ids) | |
return input_ids.shape[-1] | |
def run(message: str, | |
chat_history: list[tuple[str, str]], | |
system_prompt: str, | |
max_new_tokens: int = 1024, | |
temperature: float = 0.8, | |
top_p: float = 0.95, | |
top_k: int = 50) -> Iterator[str]: | |
prompt = get_prompt(message, chat_history, system_prompt) | |
inputs = tokenizer([prompt], return_tensors='pt', add_special_tokens=False).to(device) | |
streamer = TextIteratorStreamer(tokenizer, | |
timeout=15., | |
skip_prompt=True, | |
skip_special_tokens=True) | |
generate_kwargs = dict( | |
inputs, | |
streamer=streamer, | |
max_new_tokens=max_new_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
num_beams=1, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
outputs = [] | |
for text in streamer: | |
logger.info("outputs", outputs) | |
outputs.append(text) | |
yield "".join(outputs) |