harsh001 commited on
Commit
8c0faff
·
1 Parent(s): 7b5e475

Delete app.py.py

Browse files
Files changed (1) hide show
  1. app.py.py +0 -91
app.py.py DELETED
@@ -1,91 +0,0 @@
1
- import streamlit as st
2
- from tensorflow.keras.applications.mobilenet_v2 import preprocess_input
3
- from tensorflow.keras.preprocessing.image import img_to_array
4
- from tensorflow.keras.models import load_model
5
- import numpy as np
6
- import cv2
7
- import os
8
- from tf_explain.core.grad_cam import GradCAM
9
- from tf_explain.core.occlusion_sensitivity import OcclusionSensitivity
10
-
11
- @st.cache(hash_funcs={cv2.dnn_Net: hash})
12
- def load_face_detector_and_model():
13
- prototxt_path = os.path.sep.join(["face_detector", "deploy.prototxt"])
14
- weights_path = os.path.sep.join(["face_detector",
15
- "res10_300x300_ssd_iter_140000.caffemodel"])
16
- cnn_net = cv2.dnn.readNet(prototxt_path, weights_path)
17
-
18
- return cnn_net
19
-
20
- @st.cache(allow_output_mutation=True)
21
- def load_cnn_model():
22
- cnn_model = load_model("mask_detector.model")
23
-
24
- return cnn_model
25
-
26
- st.write('# Face Mask Image Detector')
27
-
28
- net = load_face_detector_and_model()
29
- model = load_cnn_model()
30
-
31
- uploaded_image = st.sidebar.file_uploader("Choose a JPG file", type="jpg")
32
- confidence_value = st.sidebar.slider('Confidence:', 0.0, 1.0, 0.5, 0.1)
33
- if uploaded_image:
34
- st.sidebar.info('Uploaded image:')
35
- st.sidebar.image(uploaded_image, width=240)
36
- grad_cam_button = st.sidebar.button('Grad CAM')
37
- patch_size_value = st.sidebar.slider('Patch size:', 10, 90, 20, 10)
38
- occlusion_sensitivity_button = st.sidebar.button('Occlusion Sensitivity')
39
- image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1)
40
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
41
- orig = image.copy()
42
- (h, w) = image.shape[:2]
43
- blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300),
44
- (104.0, 177.0, 123.0))
45
- net.setInput(blob)
46
- detections = net.forward()
47
-
48
- for i in range(0, detections.shape[2]):
49
- confidence = detections[0, 0, i, 2]
50
- if confidence > confidence_value:
51
- box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
52
- (startX, startY, endX, endY) = box.astype("int")
53
- (startX, startY) = (max(0, startX), max(0, startY))
54
- (endX, endY) = (min(w - 1, endX), min(h - 1, endY))
55
-
56
- face = image[startY:endY, startX:endX]
57
- face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB)
58
- face = cv2.resize(face, (224, 224))
59
- face = img_to_array(face)
60
- face = preprocess_input(face)
61
- expanded_face = np.expand_dims(face, axis=0)
62
-
63
- (mask, withoutMask) = model.predict(expanded_face)[0]
64
-
65
- predicted_class = 0
66
- label = "No Mask"
67
- if mask > withoutMask:
68
- label = "Mask"
69
- predicted_class = 1
70
-
71
- color = (0, 255, 0) if label == "Mask" else (0, 0, 255)
72
- label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100)
73
- cv2.putText(image, label, (startX, startY - 10),
74
- cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2)
75
- cv2.rectangle(image, (startX, startY), (endX, endY), color, 2)
76
- st.image(image, width=640)
77
- st.write('### ' + label)
78
-
79
- if grad_cam_button:
80
- data = ([face], None)
81
- explainer = GradCAM()
82
- grad_cam_grid = explainer.explain(
83
- data, model, class_index=predicted_class, layer_name="Conv_1"
84
- )
85
- st.image(grad_cam_grid)
86
-
87
- if occlusion_sensitivity_button:
88
- data = ([face], None)
89
- explainer = OcclusionSensitivity()
90
- sensitivity_occlusion_grid = explainer.explain(data, model, predicted_class, patch_size_value)
91
- st.image(sensitivity_occlusion_grid)