import streamlit as st from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.models import load_model import numpy as np import cv2 import os from tf_explain.core.grad_cam import GradCAM from tf_explain.core.occlusion_sensitivity import OcclusionSensitivity @st.cache(hash_funcs={cv2.dnn_Net: hash}) def load_face_detector_and_model(): prototxt_path = os.path.sep.join(["face_detector", "deploy.prototxt"]) weights_path = os.path.sep.join(["face_detector", "res10_300x300_ssd_iter_140000.caffemodel"]) cnn_net = cv2.dnn.readNet(prototxt_path, weights_path) return cnn_net @st.cache(allow_output_mutation=True) def load_cnn_model(): cnn_model = load_model("mask_detector.model") return cnn_model st.write('# Face Mask Image Detector') net = load_face_detector_and_model() model = load_cnn_model() uploaded_image = st.sidebar.file_uploader("Choose a JPG file", type="jpg") confidence_value = st.sidebar.slider('Confidence:', 0.0, 1.0, 0.5, 0.1) if uploaded_image: st.sidebar.info('Uploaded image:') st.sidebar.image(uploaded_image, width=240) grad_cam_button = st.sidebar.button('Grad CAM') patch_size_value = st.sidebar.slider('Patch size:', 10, 90, 20, 10) occlusion_sensitivity_button = st.sidebar.button('Occlusion Sensitivity') image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) orig = image.copy() (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0)) net.setInput(blob) detections = net.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > confidence_value: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) face = image[startY:endY, startX:endX] face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, (224, 224)) face = img_to_array(face) face = preprocess_input(face) expanded_face = np.expand_dims(face, axis=0) (mask, withoutMask) = model.predict(expanded_face)[0] predicted_class = 0 label = "No Mask" if mask > withoutMask: label = "Mask" predicted_class = 1 color = (0, 255, 0) if label == "Mask" else (0, 0, 255) label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) cv2.putText(image, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) cv2.rectangle(image, (startX, startY), (endX, endY), color, 2) st.image(image, width=640) st.write('### ' + label) if grad_cam_button: data = ([face], None) explainer = GradCAM() grad_cam_grid = explainer.explain( data, model, class_index=predicted_class, layer_name="Conv_1" ) st.image(grad_cam_grid) if occlusion_sensitivity_button: data = ([face], None) explainer = OcclusionSensitivity() sensitivity_occlusion_grid = explainer.explain(data, model, predicted_class, patch_size_value) st.image(sensitivity_occlusion_grid)