File size: 2,168 Bytes
3c75fe4
 
 
 
3d990ce
16dd05d
 
3c75fe4
0ef5058
 
 
3c75fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef5058
 
 
 
 
3c75fe4
 
 
3d990ce
3c75fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from fastapi import FastAPI
from pydantic import BaseModel
from groq import Groq
import os
import logging
#from dotenv import load_dotenv
#load_dotenv()

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("uvicorn")

# Initialize the FastAPI app
app = FastAPI()

# Get the API key from an environment variable
groq_api_key = os.getenv("GROQ_API_KEY")
if not groq_api_key:
    raise ValueError("GROQ_API_KEY environment variable is not set")

# Initialize Groq client
client = Groq(api_key=groq_api_key)

# Define the system message
System_msg = '''-act as an experienced blockchain developer, working for 15 years.
                -help me understand some concepts, assume I am a complete beginner.
                -If the user asks anything not related to blockchain, just say you don't know about it.'''

# Request model for FastAPI
class ChatRequest(BaseModel):
    message: str
    history: list

@app.get("/.")
def read_root():
    return {"message": "FastAPI is running!"}
    

# FastAPI chat endpoint
@app.post("/chat")
def chat(request: ChatRequest):
    logging.info(f"Received request: {request}")
    message = request.message
    history = request.history

    # Create the history_list to send to the Groq API
    history_list = [{"role": "system", "content": System_msg}]
    for human, ai in history:
        history_list.append({"role": "user", "content": human})
        history_list.append({"role": "assistant", "content": ai})

    # Append the new user message to the history
    history_list.append({"role": "user", "content": message})

    # Try to get the response from the LLaMA API (Groq)
    try:
        response = client.chat.completions.create(
            model="llama-3.1-70b-versatile",  # Ensure the correct model name
            messages=history_list,
            temperature=1.0,
            max_tokens=4000,
            stream=False  # Use streaming for real-time responses
        )

        final_message = response.choices[0].message.content

        # Return the final AI-generated message
        return {"response": final_message}

    except Exception as e:
        return {"response": f"Error: {str(e)}"}