Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,94 +1,13 @@
|
|
1 |
import uvicorn
|
2 |
import threading
|
3 |
-
import
|
4 |
-
|
5 |
-
from pydantic import BaseModel
|
6 |
-
from groq import Groq
|
7 |
-
import gradio as gr
|
8 |
-
import requests
|
9 |
|
10 |
-
# Initialize the FastAPI app
|
11 |
-
app = FastAPI()
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
if not groq_api_key:
|
16 |
-
raise ValueError("GROQ_API_KEY environment variable is not set")
|
17 |
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
System_msg = '''-act as an experienced blockchain developer, working for 15 years.
|
23 |
-
-help me understand some concepts, assume I am a complete beginner.
|
24 |
-
-If the user asks anything not related to blockchain, just say you don't know about it.'''
|
25 |
-
|
26 |
-
# Request model for FastAPI
|
27 |
-
class ChatRequest(BaseModel):
|
28 |
-
message: str
|
29 |
-
history: list
|
30 |
-
|
31 |
-
# FastAPI chat endpoint
|
32 |
-
@app.post("/chat")
|
33 |
-
def chat(request: ChatRequest):
|
34 |
-
message = request.message
|
35 |
-
history = request.history
|
36 |
-
|
37 |
-
# Create the history_list to send to the Groq API
|
38 |
-
history_list = [{"role": "system", "content": System_msg}]
|
39 |
-
for human, ai in history:
|
40 |
-
history_list.append({"role": "user", "content": human})
|
41 |
-
history_list.append({"role": "assistant", "content": ai})
|
42 |
-
|
43 |
-
# Append the new user message to the history
|
44 |
-
history_list.append({"role": "user", "content": message})
|
45 |
-
|
46 |
-
# Try to get the response from the LLaMA API (Groq)
|
47 |
-
try:
|
48 |
-
response = client.chat.completions.create(
|
49 |
-
model="llama-3.1-70b-versatile", # Ensure the correct model name
|
50 |
-
messages=history_list,
|
51 |
-
temperature=1.0,
|
52 |
-
max_tokens=4000,
|
53 |
-
stream=False # Use streaming for real-time responses
|
54 |
-
)
|
55 |
-
|
56 |
-
final_message = response.choices[0].message.content
|
57 |
-
|
58 |
-
# Return the final AI-generated message
|
59 |
-
return {"response": final_message}
|
60 |
-
|
61 |
-
except Exception as e:
|
62 |
-
return {"response": f"Error: {str(e)}"}
|
63 |
-
|
64 |
-
# Gradio Interface
|
65 |
-
def predict(message, history):
|
66 |
-
# API request to FastAPI backend
|
67 |
-
response = requests.post("http://0.0.0.0:8000/chat", json={"message": message, "history": history})
|
68 |
-
|
69 |
-
if response.status_code == 200:
|
70 |
-
response_data = response.json()
|
71 |
-
return response_data['response']
|
72 |
-
else:
|
73 |
-
return "Error: Unable to connect to the FastAPI backend."
|
74 |
-
|
75 |
-
demo = gr.ChatInterface(
|
76 |
-
predict,
|
77 |
-
title="Blockchain Teacher",
|
78 |
-
theme=gr.themes.Soft(),
|
79 |
-
chatbot=gr.Chatbot(label="Learn about blockchain technology"),
|
80 |
-
textbox=gr.Textbox(
|
81 |
-
placeholder="Ask me anything about blockchain",
|
82 |
-
scale=7,
|
83 |
-
max_lines=2,
|
84 |
-
),
|
85 |
-
)
|
86 |
-
|
87 |
-
# Function to run FastAPI in a separate thread
|
88 |
-
def start_fastapi():
|
89 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
90 |
-
|
91 |
-
# Start FastAPI and Gradio
|
92 |
-
if __name__ == "__main__":
|
93 |
-
threading.Thread(target=start_fastapi).start()
|
94 |
-
demo.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import uvicorn
|
2 |
import threading
|
3 |
+
import chat_fast_api
|
4 |
+
import gradio_app
|
|
|
|
|
|
|
|
|
5 |
|
|
|
|
|
6 |
|
7 |
+
def start_fast():
|
8 |
+
uvicorn.run("chat_fast_api:app",host="0.0.0.0",port=8000)
|
|
|
|
|
9 |
|
10 |
+
fastapi_thread = threading.Thread(target=start_fast)
|
11 |
+
fastapi_thread.start()
|
12 |
|
13 |
+
gradio_app.start_gradio()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|