File size: 5,516 Bytes
f409c2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
from datetime import datetime
import gradio as gr
import pandas as pd
from datasets import load_dataset
# Load the dataset
ds = load_dataset("harshildarji/openlegaldata", "cases", split="main")
df = pd.DataFrame(ds)
# Precompute additional columns for filtering
df["state"] = df["court"].apply(
lambda x: x.get("state", "Unknown") if isinstance(x, dict) else "Unknown"
)
df["court_name"] = df["court"].apply(
lambda x: x.get("name", "Unknown") if isinstance(x, dict) else "Unknown"
)
# Build unique lists for the filters
state_list = sorted(df["state"].dropna().unique().tolist())
state_list.insert(0, "All")
court_list = sorted(df["court_name"].dropna().unique().tolist())
court_list.insert(0, "All")
def filter_cases(state, court, date_from, date_to):
"""
Filter the cases based on state, court name, and date range.
Returns a DataFrame with selected columns.
"""
filtered = df.copy()
if state and state != "All":
filtered = filtered[filtered["state"] == state]
if court and court != "All":
filtered = filtered[filtered["court_name"] == court]
if date_from:
try:
date_from_dt = datetime.strptime(date_from, "%Y-%m-%d")
filtered = filtered[pd.to_datetime(filtered["date"]) >= date_from_dt]
except Exception:
pass
if date_to:
try:
date_to_dt = datetime.strptime(date_to, "%Y-%m-%d")
filtered = filtered[pd.to_datetime(filtered["date"]) <= date_to_dt]
except Exception:
pass
return filtered[["id", "file_number", "date", "court_name", "type"]]
def get_case_details(case_id):
"""Return an HTML formatted string with details for a given case id."""
try:
case_id = int(case_id)
except:
return "<p style='color:red;'>Invalid case ID</p>"
case_row = df[df["id"] == case_id]
if case_row.empty:
return "<p style='color:red;'>Case not found</p>"
case_data = case_row.iloc[0].to_dict()
html = "<h2>Case Details</h2>"
html += f"<p><strong>ID:</strong> {case_data.get('id')}</p>"
html += f"<p><strong>File Number:</strong> {case_data.get('file_number')}</p>"
html += f"<p><strong>Date:</strong> {case_data.get('date')}</p>"
# Display court information
court_info = case_data.get("court", {})
html += f"<p><strong>Court:</strong> {court_info.get('name', 'N/A')} ({court_info.get('state', 'N/A')})</p>"
html += f"<p><strong>Type:</strong> {case_data.get('type', 'N/A')}</p>"
html += '<hr style="margin: 15px 0;">'
# Display tenor if available
tenors = case_data.get("tenor", [])
if tenors:
html += "<h3>Tenor</h3>"
for t in tenors:
html += f"<p>{t}</p>"
html += '<hr style="margin: 15px 0;">'
# Display tatbestand if available
tatbestand = case_data.get("tatbestand", [])
if tatbestand:
html += "<h3>Tatbestand</h3>"
for t in tatbestand:
html += f"<p>{t}</p>"
html += '<hr style="margin: 15px 0;">'
# Display Gründe if available
gründe = case_data.get("gründe", [])
if gründe:
html += "<h3>Gründe</h3>"
for g in gründe:
html += f"<p>{g}</p>"
html += '<hr style="margin: 15px 0;">'
# Display Entscheidungsgründe if available
entscheidungsgründe = case_data.get("entscheidungsgründe", [])
if entscheidungsgründe:
html += "<h3>Entscheidungsgründe</h3>"
for e in entscheidungsgründe:
html += f"<p>{e}</p>"
html += '<hr style="margin: 15px 0;">'
return html
# Build multi-tabs interface
with gr.Blocks(title="German Legal Case Viewer", fill_width=True) as demo:
gr.Markdown("# German Legal Case Viewer")
gr.Markdown(
"Explore case information from the processed [Open Legal Data dataset](https://huggingface.co/datasets/harshildarji/openlegaldata)."
)
with gr.Tabs():
# First Tab - Browse and filter cases
with gr.Tab("Browse Cases"):
gr.Markdown("## Filter Cases")
with gr.Row():
state_input = gr.Dropdown(
choices=state_list, label="State", value="All"
)
court_input = gr.Dropdown(
choices=court_list, label="Court", value="All"
)
date_from_input = gr.Textbox(
label="From Date (YYYY-MM-DD)", placeholder="2022-01-01"
)
date_to_input = gr.Textbox(
label="To Date (YYYY-MM-DD)", placeholder="2022-12-31"
)
filter_button = gr.Button("Apply Filters")
output_table = gr.DataFrame(label="Cases Overview")
filter_button.click(
fn=filter_cases,
inputs=[state_input, court_input, date_from_input, date_to_input],
outputs=output_table,
)
# Second Tab - Show details of a specific case
with gr.Tab("Case Details"):
with gr.Row():
case_id_input = gr.Textbox(
label="Enter Case ID", placeholder="e.g., 346915"
)
details_button = gr.Button("Get Details")
case_details_output = gr.HTML(label="Case Details")
details_button.click(
fn=get_case_details,
inputs=case_id_input,
outputs=case_details_output,
)
demo.launch()
|