File size: 5,516 Bytes
f409c2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
from datetime import datetime

import gradio as gr
import pandas as pd
from datasets import load_dataset

# Load the dataset
ds = load_dataset("harshildarji/openlegaldata", "cases", split="main")
df = pd.DataFrame(ds)

# Precompute additional columns for filtering
df["state"] = df["court"].apply(
    lambda x: x.get("state", "Unknown") if isinstance(x, dict) else "Unknown"
)
df["court_name"] = df["court"].apply(
    lambda x: x.get("name", "Unknown") if isinstance(x, dict) else "Unknown"
)

# Build unique lists for the filters
state_list = sorted(df["state"].dropna().unique().tolist())
state_list.insert(0, "All")
court_list = sorted(df["court_name"].dropna().unique().tolist())
court_list.insert(0, "All")


def filter_cases(state, court, date_from, date_to):
    """
    Filter the cases based on state, court name, and date range.
    Returns a DataFrame with selected columns.
    """
    filtered = df.copy()
    if state and state != "All":
        filtered = filtered[filtered["state"] == state]
    if court and court != "All":
        filtered = filtered[filtered["court_name"] == court]
    if date_from:
        try:
            date_from_dt = datetime.strptime(date_from, "%Y-%m-%d")
            filtered = filtered[pd.to_datetime(filtered["date"]) >= date_from_dt]
        except Exception:
            pass
    if date_to:
        try:
            date_to_dt = datetime.strptime(date_to, "%Y-%m-%d")
            filtered = filtered[pd.to_datetime(filtered["date"]) <= date_to_dt]
        except Exception:
            pass

    return filtered[["id", "file_number", "date", "court_name", "type"]]


def get_case_details(case_id):
    """Return an HTML formatted string with details for a given case id."""
    try:
        case_id = int(case_id)
    except:
        return "<p style='color:red;'>Invalid case ID</p>"
    case_row = df[df["id"] == case_id]
    if case_row.empty:
        return "<p style='color:red;'>Case not found</p>"
    case_data = case_row.iloc[0].to_dict()

    html = "<h2>Case Details</h2>"
    html += f"<p><strong>ID:</strong> {case_data.get('id')}</p>"
    html += f"<p><strong>File Number:</strong> {case_data.get('file_number')}</p>"
    html += f"<p><strong>Date:</strong> {case_data.get('date')}</p>"

    # Display court information
    court_info = case_data.get("court", {})
    html += f"<p><strong>Court:</strong> {court_info.get('name', 'N/A')} ({court_info.get('state', 'N/A')})</p>"
    html += f"<p><strong>Type:</strong> {case_data.get('type', 'N/A')}</p>"
    html += '<hr style="margin: 15px 0;">'

    # Display tenor if available
    tenors = case_data.get("tenor", [])
    if tenors:
        html += "<h3>Tenor</h3>"
        for t in tenors:
            html += f"<p>{t}</p>"
        html += '<hr style="margin: 15px 0;">'

    # Display tatbestand if available
    tatbestand = case_data.get("tatbestand", [])
    if tatbestand:
        html += "<h3>Tatbestand</h3>"
        for t in tatbestand:
            html += f"<p>{t}</p>"
        html += '<hr style="margin: 15px 0;">'

    # Display Gründe if available
    gründe = case_data.get("gründe", [])
    if gründe:
        html += "<h3>Gründe</h3>"
        for g in gründe:
            html += f"<p>{g}</p>"
        html += '<hr style="margin: 15px 0;">'

    # Display Entscheidungsgründe if available
    entscheidungsgründe = case_data.get("entscheidungsgründe", [])
    if entscheidungsgründe:
        html += "<h3>Entscheidungsgründe</h3>"
        for e in entscheidungsgründe:
            html += f"<p>{e}</p>"
        html += '<hr style="margin: 15px 0;">'

    return html


# Build multi-tabs interface
with gr.Blocks(title="German Legal Case Viewer", fill_width=True) as demo:
    gr.Markdown("# German Legal Case Viewer")
    gr.Markdown(
        "Explore case information from the processed [Open Legal Data dataset](https://huggingface.co/datasets/harshildarji/openlegaldata)."
    )

    with gr.Tabs():
        # First Tab - Browse and filter cases
        with gr.Tab("Browse Cases"):
            gr.Markdown("## Filter Cases")
            with gr.Row():
                state_input = gr.Dropdown(
                    choices=state_list, label="State", value="All"
                )
                court_input = gr.Dropdown(
                    choices=court_list, label="Court", value="All"
                )
                date_from_input = gr.Textbox(
                    label="From Date (YYYY-MM-DD)", placeholder="2022-01-01"
                )
                date_to_input = gr.Textbox(
                    label="To Date (YYYY-MM-DD)", placeholder="2022-12-31"
                )
            filter_button = gr.Button("Apply Filters")
            output_table = gr.DataFrame(label="Cases Overview")
            filter_button.click(
                fn=filter_cases,
                inputs=[state_input, court_input, date_from_input, date_to_input],
                outputs=output_table,
            )

        # Second Tab - Show details of a specific case
        with gr.Tab("Case Details"):
            with gr.Row():
                case_id_input = gr.Textbox(
                    label="Enter Case ID", placeholder="e.g., 346915"
                )
                details_button = gr.Button("Get Details")
            case_details_output = gr.HTML(label="Case Details")
            details_button.click(
                fn=get_case_details,
                inputs=case_id_input,
                outputs=case_details_output,
            )

demo.launch()