File size: 6,059 Bytes
da37e40
 
56fe3c0
da37e40
56fe3c0
 
 
 
 
 
 
 
 
4a3eaed
 
56fe3c0
 
 
 
da37e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3894519
 
 
da37e40
 
56fe3c0
 
 
 
4a3eaed
da37e40
4a3eaed
 
 
 
56fe3c0
4a3eaed
 
 
 
 
56fe3c0
4a3eaed
 
 
 
 
 
 
 
 
56fe3c0
 
 
4a3eaed
da37e40
 
 
 
 
 
 
 
56fe3c0
 
4a3eaed
56fe3c0
da37e40
4a3eaed
 
 
 
 
 
 
 
da37e40
4a3eaed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da37e40
 
 
 
 
 
 
 
 
 
 
 
 
4a3eaed
da37e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a3eaed
da37e40
 
56fe3c0
da37e40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdcb2c9
da37e40
56fe3c0
 
da37e40
 
85ed894
56fe3c0
4a3eaed
 
 
 
 
 
da37e40
 
 
 
4a3eaed
da37e40
 
56fe3c0
4a3eaed
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
import re
import string

import matplotlib.cm as cm
import streamlit as st
from charset_normalizer import detect
from transformers import (
    AutoModelForTokenClassification,
    AutoTokenizer,
    logging,
    pipeline,
)

# Streamlit page setup
st.set_page_config(page_title="Juristische NER", page_icon="⚖️", layout="wide")
logging.set_verbosity(logging.ERROR)

st.markdown(
    """
<style>
.block-container {
    padding-top: 1rem;
    padding-bottom: 5rem;
    padding-left: 3rem;
    padding-right: 3rem;
}
header, footer {visibility: hidden;}
.entity {
    position: relative;
    display: inline-block;
    background-color: transparent;
    font-weight: normal;
    cursor: help;
}
.entity .tooltip {
    visibility: hidden;
    background-color: #333;
    color: #fff;
    text-align: center;
    border-radius: 4px;
    padding: 2px 6px;
    position: absolute;
    z-index: 1;
    bottom: 125%;
    left: 50%;
    transform: translateX(-50%);
    white-space: nowrap;
    opacity: 0;
    transition: opacity 0.05s;
    font-size: 11px;
}
.entity:hover .tooltip {
    visibility: visible;
    opacity: 1;
}
.entity.marked {
    background-color: rgba(255, 230, 0, 0.4);
    line-height: 1.3;
    padding: 0 1px;
    border-radius: 0px;
}
</style>
""",
    unsafe_allow_html=True,
)

# Entity label mapping
entity_labels = {
    "AN": "Rechtsbeistand",
    "EUN": "EUNorm",
    "GRT": "Gericht",
    "GS": "Norm",
    "INN": "Institution",
    "LD": "Land",
    "LDS": "Bezirk",
    "LIT": "Schrifttum",
    "MRK": "Marke",
    "ORG": "Organisation",
    "PER": "Person",
    "RR": "RichterIn",
    "RS": "Entscheidung",
    "ST": "Stadt",
    "STR": "Strasse",
    "UN": "Unternehmen",
    "VO": "Verordnung",
    "VS": "Richtlinie",
    "VT": "Vertrag",
    "RED": "Schwärzung",
}


# Color generator
def generate_fixed_colors(keys, alpha=0.25):
    cmap = cm.get_cmap("tab20", len(keys))
    rgba_colors = {}
    for i, key in enumerate(keys):
        r, g, b, _ = cmap(i)
        rgba = f"rgba({int(r*255)}, {int(g*255)}, {int(b*255)}, {alpha})"
        rgba_colors[key] = rgba
    return rgba_colors


ENTITY_COLORS = generate_fixed_colors(list(entity_labels.keys()))


# Caching model
@st.cache_resource
def load_ner_pipeline():
    return pipeline(
        "ner",
        model=AutoModelForTokenClassification.from_pretrained("harshildarji/JuraNER"),
        tokenizer=AutoTokenizer.from_pretrained("harshildarji/JuraNER"),
    )


# Caching NER + merge per line
@st.cache_data(show_spinner=False)
def get_ner_merged_lines(text):
    ner = load_ner_pipeline()
    results = []
    for line in text.splitlines():
        if not line.strip():
            results.append(("", []))
            continue
        tokens = ner(line)
        merged = merge_entities(tokens)
        results.append((line, merged))
    return results


# Entity merging
def merge_entities(entities):
    if not entities:
        return []

    ents = sorted(entities, key=lambda e: e["index"])
    merged = [ents[0].copy()]
    merged[0]["score_sum"] = ents[0]["score"]
    merged[0]["count"] = 1

    for ent in ents[1:]:
        prev = merged[-1]
        if ent["index"] == prev["index"] + 1:
            tok = ent["word"]
            prev["word"] += tok[2:] if tok.startswith("##") else " " + tok
            prev["end"] = ent["end"]
            prev["index"] = ent["index"]
            prev["score_sum"] += ent["score"]
            prev["count"] += 1
        else:
            prev["score"] = prev["score_sum"] / prev["count"]
            del prev["score_sum"]
            del prev["count"]
            new_ent = ent.copy()
            new_ent["score_sum"] = ent["score"]
            new_ent["count"] = 1
            merged.append(new_ent)

    if "score_sum" in merged[-1]:
        merged[-1]["score"] = merged[-1]["score_sum"] / merged[-1]["count"]
        del merged[-1]["score_sum"]
        del merged[-1]["count"]

    final = []
    for ent in merged:
        w = ent["word"].strip()
        w = re.sub(r"\s*\.\s*", ".", w)
        w = re.sub(r"\s*,\s*", ", ", w)
        w = re.sub(r"\s*/\s*", "/", w)
        w = w.strip(string.whitespace + string.punctuation)
        if len(w) > 1 and re.search(r"\w", w):
            cleaned = ent.copy()
            cleaned["word"] = w
            final.append(cleaned)

    return final


# Highlighting
def highlight_entities(line, merged_entities, threshold):
    html = ""
    last_end = 0

    for ent in merged_entities:
        if ent["score"] < threshold:
            continue

        start, end = ent["start"], ent["end"]
        label = ent["entity"].split("-")[-1]
        label_desc = entity_labels.get(label, label)
        color = ENTITY_COLORS.get(label, "#cccccc")

        html += line[last_end:start]

        highlight_style = f"background-color:{color}; font-weight:600;"
        html += (
            f'<span class="entity marked" style="{highlight_style}">'
            f'{ent["word"]}<span class="tooltip">{label_desc}</span></span>'
        )

        last_end = end

    html += line[last_end:]
    return html


# UI
st.markdown("#### Juristische Named Entity Recognition (NER)")
uploaded_file = st.file_uploader("Bitte laden Sie eine .txt-Datei hoch:", type="txt")
threshold = st.slider("Schwellenwert für das Modellvertrauen:", 0.0, 1.0, 0.8, 0.01)
st.markdown("---")

if uploaded_file:
    raw_bytes = uploaded_file.read()
    encoding = detect(raw_bytes)["encoding"]
    if encoding is None:
        st.error("Zeichenkodierung konnte nicht erkannt werden.")
    else:
        text = raw_bytes.decode(encoding)

        with st.spinner("Modell wird auf jede Zeile angewendet..."):
            merged_all_lines = get_ner_merged_lines(text)

        for line, merged in merged_all_lines:
            if not line.strip():
                continue

            html_line = highlight_entities(line, merged, threshold)
            st.markdown(
                f'<div style="margin-bottom:0.8rem; line-height:1.7;">{html_line}</div>',
                unsafe_allow_html=True,
            )