Spaces:
Running
Running
File size: 9,988 Bytes
504150b 7c01ff6 56fe3c0 f61b8e7 56fe3c0 504150b 56fe3c0 504150b 56fe3c0 504150b 56fe3c0 504150b 56fe3c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import re
import os
import warnings
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import streamlit as st
from charset_normalizer import detect
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
logging,
pipeline,
)
warnings.simplefilter(action="ignore", category=Warning)
logging.set_verbosity(logging.ERROR)
st.set_page_config(page_title="Legal NER", page_icon="⚖️", layout="wide")
st.markdown(
"""
<style>
body {
font-family: 'Poppins', sans-serif;
background-color: #f4f4f8;
}
.header {
background-color: rgba(220, 219, 219, 0.25);
color: #000;
padding: 5px 0;
text-align: center;
border-radius: 7px;
margin-bottom: 13px;
border-bottom: 2px solid #333;
}
.container {
background-color: #fff;
padding: 30px;
border-radius: 10px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
width: 100%;
max-width: 1000px;
margin: 0 auto;
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
}
.btn-primary {
background-color: #5477d1;
border: none;
transition: background-color 0.3s, transform 0.2s;
border-radius: 25px;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
}
.btn-primary:hover {
background-color: #4c6cbe;
transform: translateY(-1px);
}
h2 {
font-weight: 600;
font-size: 24px;
margin-bottom: 20px;
}
label {
font-weight: 500;
}
.tip {
background-color: rgba(180, 47, 109, 0.25);
padding: 7px;
border-radius: 7px;
display: inline-block;
margin-top: 15px;
margin-bottom: 15px;
}
.sec {
background-color: rgba(220, 219, 219, 0.10);
padding: 7px;
border-radius: 5px;
display: inline-block;
margin-top: 15px;
margin-bottom: 15px;
}
.tooltip {
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 120px;
background-color: #6c757d;
color: #fff;
text-align: center;
border-radius: 3px;
padding: 3px;
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
margin-left: -60px;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
.anonymized {
background-color: #ffcccb;
color: #000;
font-weight: bold;
border-radius: 3px;
padding: 2px 4px;
}
</style>
""",
unsafe_allow_html=True,
)
# Initialization for German Legal NER
tkn = os.getenv("tkn")
tokenizer = AutoTokenizer.from_pretrained("harshildarji/JuraBERT", use_auth_token=tkn)
model = AutoModelForTokenClassification.from_pretrained(
"harshildarji/JuraBERT", use_auth_token=tkn
)
ner = pipeline("ner", model=model, tokenizer=tokenizer)
# Define class labels for the model
classes = {
"AN": "Lawyer",
"EUN": "European legal norm",
"GRT": "Court",
"GS": "Law",
"INN": "Institution",
"LD": "Country",
"LDS": "Landscape",
"LIT": "Legal literature",
"MRK": "Brand",
"ORG": "Organization",
"PER": "Person",
"RR": "Judge",
"RS": "Court decision",
"ST": "City",
"STR": "Street",
"UN": "Company",
"VO": "Ordinance",
"VS": "Regulation",
"VT": "Contract",
}
ner_labels = list(classes.keys())
# Function to generate a list of colors for visualization
def generate_colors(num_colors):
cm = plt.get_cmap("tab20")
colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
return colors
# Function to color substrings based on NER results
def color_substrings(input_string, model_output):
colors = generate_colors(len(ner_labels))
label_to_color = {
label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
}
last_end = 0
html_output = ""
for entity in sorted(model_output, key=lambda x: x["start"]):
start, end, label = entity["start"], entity["end"], entity["label"]
html_output += input_string[last_end:start]
tooltip = classes.get(label, "")
html_output += f'<span class="tooltip" style="color: {label_to_color.get(label)}; font-weight: bold;">{input_string[start:end]}<span class="tooltiptext">{tooltip}</span></span>'
last_end = end
html_output += input_string[last_end:]
return html_output
# Function to anonymize entities
def anonymize_text(input_string, model_output):
anonymized_text = ""
last_end = 0
for entity in sorted(model_output, key=lambda x: x["start"]):
start, end, label = entity["start"], entity["end"], entity["label"]
anonymized_text += input_string[last_end:start]
anonymized_text += (
f'<span class="anonymized">[{classes.get(label, label)}]</span>'
)
last_end = end
anonymized_text += input_string[last_end:]
return anonymized_text
def merge_entities(ner_results):
merged_entities = []
current_entity = None
for token in ner_results:
tag = token["entity"]
entity_type = tag.split("-")[-1] if "-" in tag else tag
token_start, token_end = token["start"], token["end"]
token_word = token["word"].replace("##", "") # Remove subword prefixes
# Start a new entity if necessary
if (
tag.startswith("B-")
or current_entity is None
or current_entity["label"] != entity_type
):
if current_entity:
merged_entities.append(current_entity)
current_entity = {
"start": token_start,
"end": token_end,
"label": entity_type,
"word": token_word,
}
elif (
tag.startswith("I-")
and current_entity
and current_entity["label"] == entity_type
):
# Extend the current entity
current_entity["end"] = token_end
current_entity["word"] += token_word
else:
# Handle misclassifications or gaps in tokens
if (
current_entity
and token_start == current_entity["end"]
and current_entity["label"] == entity_type
):
current_entity["end"] = token_end
current_entity["word"] += token_word
else:
# Treat it as a new entity if the above conditions aren't met
if current_entity:
merged_entities.append(current_entity)
current_entity = {
"start": token_start,
"end": token_end,
"label": entity_type,
"word": token_word,
}
# Append the last entity
if current_entity:
merged_entities.append(current_entity)
return merged_entities
st.title("Legal NER")
st.markdown("<hr>", unsafe_allow_html=True)
uploaded_file = st.file_uploader("Upload a .txt file", type="txt")
if uploaded_file is not None:
try:
raw_content = uploaded_file.read()
detected = detect(raw_content)
encoding = detected["encoding"]
if encoding is None:
raise ValueError("Unable to detect file encoding.")
lines = raw_content.decode(encoding).splitlines()
anonymize_mode = st.checkbox("Anonymize")
st.markdown(
"<hr style='margin-top: 10px; margin-bottom: 20px;'>",
unsafe_allow_html=True,
)
anonymized_lines = []
displayed_lines = []
for line_number, line in enumerate(lines, start=1):
if line.strip():
results = ner(line)
merged_results = merge_entities(results)
if anonymize_mode:
anonymized_text = anonymize_text(line, merged_results)
displayed_lines.append(anonymized_text)
plain_text = re.sub(r"<.*?>", "", anonymized_text)
anonymized_lines.append(plain_text.strip())
else:
colored_html = color_substrings(line, merged_results)
st.markdown(f"{colored_html}", unsafe_allow_html=True)
else:
displayed_lines.append("<br>")
anonymized_lines.append("")
if anonymize_mode:
original_file_name = uploaded_file.name
download_file_name = f"Anon_{original_file_name}"
anonymized_content = "\n".join(anonymized_lines)
for displayed_line in displayed_lines:
st.markdown(f"{displayed_line}", unsafe_allow_html=True)
st.markdown("<hr>", unsafe_allow_html=True)
st.download_button(
label="Download Anonymized Text",
data=anonymized_content,
file_name=download_file_name,
mime="text/plain",
)
if not anonymize_mode:
st.markdown(
'<div class="tip"><strong>Tip:</strong> Hover over the colored words to see its class.</div>',
unsafe_allow_html=True,
)
except Exception as e:
st.error(f"An error occurred while processing the file: {e}")
|