File size: 9,988 Bytes
504150b
7c01ff6
56fe3c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f61b8e7
56fe3c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504150b
56fe3c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
504150b
 
 
56fe3c0
 
 
 
 
 
 
504150b
 
 
56fe3c0
 
 
 
504150b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56fe3c0
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
import re
import os
import warnings

import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import streamlit as st
from charset_normalizer import detect
from transformers import (
    AutoModelForTokenClassification,
    AutoTokenizer,
    logging,
    pipeline,
)

warnings.simplefilter(action="ignore", category=Warning)
logging.set_verbosity(logging.ERROR)

st.set_page_config(page_title="Legal NER", page_icon="⚖️", layout="wide")

st.markdown(
    """
    <style>
        body {
            font-family: 'Poppins', sans-serif;
            background-color: #f4f4f8;
        }
        .header {
            background-color: rgba(220, 219, 219, 0.25);
            color: #000;
            padding: 5px 0;
            text-align: center;
            border-radius: 7px;
            margin-bottom: 13px;
            border-bottom: 2px solid #333;
        }
        .container {
            background-color: #fff;
            padding: 30px;
            border-radius: 10px;
            box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
            width: 100%;
            max-width: 1000px;
            margin: 0 auto;
            position: absolute;
            top: 50%;
            left: 50%;
            transform: translate(-50%, -50%);
        }
        .btn-primary {
            background-color: #5477d1;
            border: none;
            transition: background-color 0.3s, transform 0.2s;
            border-radius: 25px;
            box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
        }
        .btn-primary:hover {
            background-color: #4c6cbe;
            transform: translateY(-1px);
        }
        h2 {
            font-weight: 600;
            font-size: 24px;
            margin-bottom: 20px;
        }
        label {
            font-weight: 500;
        }
        .tip {
            background-color: rgba(180, 47, 109, 0.25);
            padding: 7px;
            border-radius: 7px;
            display: inline-block;
            margin-top: 15px;
            margin-bottom: 15px;
        }
        .sec {
            background-color: rgba(220, 219, 219, 0.10);
            padding: 7px;
            border-radius: 5px;
            display: inline-block;
            margin-top: 15px;
            margin-bottom: 15px;
        }
        .tooltip {
            position: relative;
            display: inline-block;
            cursor: pointer;
        }
        .tooltip .tooltiptext {
            visibility: hidden;
            width: 120px;
            background-color: #6c757d;
            color: #fff;
            text-align: center;
            border-radius: 3px;
            padding: 3px;
            position: absolute;
            z-index: 1;
            bottom: 125%; 
            left: 50%; 
            margin-left: -60px;
            opacity: 0;
            transition: opacity 0.3s;
        }
        .tooltip:hover .tooltiptext {
            visibility: visible;
            opacity: 1;
        }
        .anonymized {
            background-color: #ffcccb;
            color: #000;
            font-weight: bold;
            border-radius: 3px;
            padding: 2px 4px;
        }
    </style>
""",
    unsafe_allow_html=True,
)

# Initialization for German Legal NER
tkn = os.getenv("tkn")
tokenizer = AutoTokenizer.from_pretrained("harshildarji/JuraBERT", use_auth_token=tkn)
model = AutoModelForTokenClassification.from_pretrained(
    "harshildarji/JuraBERT", use_auth_token=tkn
)
ner = pipeline("ner", model=model, tokenizer=tokenizer)

# Define class labels for the model
classes = {
    "AN": "Lawyer",
    "EUN": "European legal norm",
    "GRT": "Court",
    "GS": "Law",
    "INN": "Institution",
    "LD": "Country",
    "LDS": "Landscape",
    "LIT": "Legal literature",
    "MRK": "Brand",
    "ORG": "Organization",
    "PER": "Person",
    "RR": "Judge",
    "RS": "Court decision",
    "ST": "City",
    "STR": "Street",
    "UN": "Company",
    "VO": "Ordinance",
    "VS": "Regulation",
    "VT": "Contract",
}
ner_labels = list(classes.keys())


# Function to generate a list of colors for visualization
def generate_colors(num_colors):
    cm = plt.get_cmap("tab20")
    colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
    return colors


# Function to color substrings based on NER results
def color_substrings(input_string, model_output):
    colors = generate_colors(len(ner_labels))
    label_to_color = {
        label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
    }

    last_end = 0
    html_output = ""

    for entity in sorted(model_output, key=lambda x: x["start"]):
        start, end, label = entity["start"], entity["end"], entity["label"]
        html_output += input_string[last_end:start]
        tooltip = classes.get(label, "")
        html_output += f'<span class="tooltip" style="color: {label_to_color.get(label)}; font-weight: bold;">{input_string[start:end]}<span class="tooltiptext">{tooltip}</span></span>'
        last_end = end

    html_output += input_string[last_end:]

    return html_output


# Function to anonymize entities
def anonymize_text(input_string, model_output):
    anonymized_text = ""
    last_end = 0

    for entity in sorted(model_output, key=lambda x: x["start"]):
        start, end, label = entity["start"], entity["end"], entity["label"]
        anonymized_text += input_string[last_end:start]
        anonymized_text += (
            f'<span class="anonymized">[{classes.get(label, label)}]</span>'
        )
        last_end = end

    anonymized_text += input_string[last_end:]

    return anonymized_text


def merge_entities(ner_results):
    merged_entities = []
    current_entity = None

    for token in ner_results:
        tag = token["entity"]
        entity_type = tag.split("-")[-1] if "-" in tag else tag
        token_start, token_end = token["start"], token["end"]
        token_word = token["word"].replace("##", "")  # Remove subword prefixes

        # Start a new entity if necessary
        if (
            tag.startswith("B-")
            or current_entity is None
            or current_entity["label"] != entity_type
        ):
            if current_entity:
                merged_entities.append(current_entity)
            current_entity = {
                "start": token_start,
                "end": token_end,
                "label": entity_type,
                "word": token_word,
            }
        elif (
            tag.startswith("I-")
            and current_entity
            and current_entity["label"] == entity_type
        ):
            # Extend the current entity
            current_entity["end"] = token_end
            current_entity["word"] += token_word
        else:
            # Handle misclassifications or gaps in tokens
            if (
                current_entity
                and token_start == current_entity["end"]
                and current_entity["label"] == entity_type
            ):
                current_entity["end"] = token_end
                current_entity["word"] += token_word
            else:
                # Treat it as a new entity if the above conditions aren't met
                if current_entity:
                    merged_entities.append(current_entity)
                current_entity = {
                    "start": token_start,
                    "end": token_end,
                    "label": entity_type,
                    "word": token_word,
                }

    # Append the last entity
    if current_entity:
        merged_entities.append(current_entity)

    return merged_entities


st.title("Legal NER")
st.markdown("<hr>", unsafe_allow_html=True)

uploaded_file = st.file_uploader("Upload a .txt file", type="txt")


if uploaded_file is not None:
    try:
        raw_content = uploaded_file.read()

        detected = detect(raw_content)
        encoding = detected["encoding"]

        if encoding is None:
            raise ValueError("Unable to detect file encoding.")

        lines = raw_content.decode(encoding).splitlines()

        anonymize_mode = st.checkbox("Anonymize")
        st.markdown(
            "<hr style='margin-top: 10px; margin-bottom: 20px;'>",
            unsafe_allow_html=True,
        )

        anonymized_lines = []
        displayed_lines = []

        for line_number, line in enumerate(lines, start=1):
            if line.strip():
                results = ner(line)
                merged_results = merge_entities(results)

                if anonymize_mode:
                    anonymized_text = anonymize_text(line, merged_results)
                    displayed_lines.append(anonymized_text)
                    plain_text = re.sub(r"<.*?>", "", anonymized_text)
                    anonymized_lines.append(plain_text.strip())
                else:
                    colored_html = color_substrings(line, merged_results)
                    st.markdown(f"{colored_html}", unsafe_allow_html=True)
            else:
                displayed_lines.append("<br>")
                anonymized_lines.append("")

        if anonymize_mode:
            original_file_name = uploaded_file.name
            download_file_name = f"Anon_{original_file_name}"

            anonymized_content = "\n".join(anonymized_lines)

            for displayed_line in displayed_lines:
                st.markdown(f"{displayed_line}", unsafe_allow_html=True)

            st.markdown("<hr>", unsafe_allow_html=True)
            st.download_button(
                label="Download Anonymized Text",
                data=anonymized_content,
                file_name=download_file_name,
                mime="text/plain",
            )

        if not anonymize_mode:
            st.markdown(
                '<div class="tip"><strong>Tip:</strong> Hover over the colored words to see its class.</div>',
                unsafe_allow_html=True,
            )

    except Exception as e:
        st.error(f"An error occurred while processing the file: {e}")