Spaces:
Sleeping
Sleeping
File size: 13,179 Bytes
504150b 46bc38c 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 6fa58f0 bdcb2c9 9136cf1 bdcb2c9 56fe3c0 bd27a70 1b901a6 56fe3c0 1b901a6 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 85ed894 56fe3c0 bdcb2c9 56fe3c0 85ed894 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 504150b 56fe3c0 bdcb2c9 56fe3c0 504150b bdcb2c9 56fe3c0 bdcb2c9 504150b 56fe3c0 bdcb2c9 504150b bdcb2c9 504150b bdcb2c9 6fa58f0 56fe3c0 bdcb2c9 56fe3c0 bdcb2c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
import re
import os
import warnings
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import streamlit as st
from charset_normalizer import detect
from transformers import (
AutoModelForTokenClassification,
AutoTokenizer,
logging,
pipeline,
)
warnings.simplefilter(action="ignore", category=Warning)
logging.set_verbosity(logging.ERROR)
st.set_page_config(page_title="Legal NER", page_icon="⚖️", layout="wide")
st.markdown(
"""
<style>
body {
font-family: 'Poppins', sans-serif;
background-color: #f4f4f8;
}
.header {
background-color: rgba(220, 219, 219, 0.25);
color: #000;
padding: 5px 0;
text-align: center;
border-radius: 7px;
margin-bottom: 13px;
border-bottom: 2px solid #333;
}
.container {
background-color: #fff;
padding: 30px;
border-radius: 10px;
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
width: 100%;
max-width: 1000px;
margin: 0 auto;
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
}
.btn-primary {
background-color: #5477d1;
border: none;
transition: background-color 0.3s, transform 0.2s;
border-radius: 25px;
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
}
.btn-primary:hover {
background-color: #4c6cbe;
transform: translateY(-1px);
}
h2 {
font-weight: 600;
font-size: 24px;
margin-bottom: 20px;
}
label {
font-weight: 500;
}
.tip {
background-color: rgba(180, 47, 109, 0.25);
padding: 7px;
border-radius: 7px;
display: inline-block;
margin-top: 15px;
margin-bottom: 15px;
}
.sec {
background-color: rgba(220, 219, 219, 0.10);
padding: 7px;
border-radius: 5px;
display: inline-block;
margin-top: 15px;
margin-bottom: 15px;
}
.tooltip {
position: relative;
display: inline-block;
cursor: pointer;
}
.tooltip .tooltiptext {
visibility: hidden;
width: 120px;
background-color: #6c757d;
color: #fff;
text-align: center;
border-radius: 3px;
padding: 3px;
position: absolute;
z-index: 1;
bottom: 125%;
left: 50%;
margin-left: -60px;
opacity: 0;
transition: opacity 0.3s;
}
.tooltip:hover .tooltiptext {
visibility: visible;
opacity: 1;
}
.anonymized {
background-color: #ffcccb;
color: #000;
font-weight: bold;
border-radius: 3px;
padding: 2px 4px;
}
#language-container {
position: fixed;
top: 10px;
right: 10px;
z-index: 1000;
}
</style>
""",
unsafe_allow_html=True,
)
# UI text for English and German.
ui_text = {
"EN": {
"title": "Legal NER",
"upload": "Upload a .txt file",
"anonymize": "Anonymize",
"select_entities": "Entity types to anonymize:",
"download": "Download Anonymized Text",
"tip": "Tip: Hover over the colored words to see its class.",
"error": "An error occurred while processing the file: ",
},
"DE": {
"title": "Juristische NER",
"upload": "Lade eine .txt-Datei hoch",
"anonymize": "Anonymisieren",
"select_entities": "Entitätstypen zur Anonymisierung:",
"download": "Anonymisierten Text herunterladen",
"tip": "Tipp: Fahre mit der Maus über die farbigen Wörter, um deren Klasse zu sehen.",
"error": "Beim Verarbeiten der Datei ist ein Fehler aufgetreten: ",
},
}
col1, col2 = st.columns([4, 1])
with col2:
lang = st.radio(
"Language:",
options=["EN", "DE"],
horizontal=True,
label_visibility="hidden",
key="language_selector",
)
with col1:
st.title(ui_text[lang]["title"])
# Initialization for German Legal NER
tkn = os.getenv("tkn")
tokenizer = AutoTokenizer.from_pretrained("harshildarji/JuraNER", use_auth_token=tkn)
model = AutoModelForTokenClassification.from_pretrained(
"harshildarji/JuraNER", use_auth_token=tkn
)
ner = pipeline("ner", model=model, tokenizer=tokenizer)
# Define class labels for the model
classes = {
"AN": "Lawyer",
"EUN": "European legal norm",
"GRT": "Court",
"GS": "Law",
"INN": "Institution",
"LD": "Country",
"LDS": "Landscape",
"LIT": "Legal literature",
"MRK": "Brand",
"ORG": "Organization",
"PER": "Person",
"RR": "Judge",
"RS": "Court decision",
"ST": "City",
"STR": "Street",
"UN": "Company",
"VO": "Ordinance",
"VS": "Regulation",
"VT": "Contract",
}
ner_labels = list(classes.keys())
# Generate a list of colors for visualization
def generate_colors(num_colors):
cm = plt.get_cmap("tab20")
colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
return colors
# Color substrings based on NER results
def color_substrings(input_string, model_output):
colors = generate_colors(len(ner_labels))
label_to_color = {
label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
}
last_end = 0
html_output = ""
for entity in sorted(model_output, key=lambda x: x["start"]):
start, end, label = entity["start"], entity["end"], entity["label"]
html_output += input_string[last_end:start]
tooltip = classes.get(label, "")
html_output += (
f'<span class="tooltip" style="color: {label_to_color.get(label)}; font-weight: bold;">'
f'{input_string[start:end]}<span class="tooltiptext">{tooltip}</span></span>'
)
last_end = end
html_output += input_string[last_end:]
return html_output
# Selectively anonymize entities
def anonymize_text(input_string, model_output, selected_entities=None):
merged_model_output = []
sorted_entities = sorted(model_output, key=lambda x: x["start"])
if sorted_entities:
current = sorted_entities[0]
for entity in sorted_entities[1:]:
if (
entity["label"] == current["label"]
and input_string[current["end"] : entity["start"]].strip() == ""
):
current["end"] = entity["end"]
current["word"] = input_string[current["start"] : current["end"]]
else:
merged_model_output.append(current)
current = entity
merged_model_output.append(current)
else:
merged_model_output = sorted_entities
anonymized_text = ""
last_end = 0
colors = generate_colors(len(ner_labels))
label_to_color = {
label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
}
for entity in merged_model_output:
start, end, label = entity["start"], entity["end"], entity["label"]
anonymized_text += input_string[last_end:start]
if selected_entities is None or label in selected_entities:
anonymized_text += (
f'<span class="anonymized">[{classes.get(label, label)}]</span>'
)
else:
tooltip = classes.get(label, "")
anonymized_text += (
f'<span class="tooltip" style="color: {label_to_color.get(label)}; font-weight: bold;">'
f'{input_string[start:end]}<span class="tooltiptext">{tooltip}</span></span>'
)
last_end = end
anonymized_text += input_string[last_end:]
return anonymized_text
def merge_entities(ner_results):
merged_entities = []
current_entity = None
for token in ner_results:
tag = token["entity"]
entity_type = tag.split("-")[-1] if "-" in tag else tag
token_start, token_end = token["start"], token["end"]
token_word = token["word"].replace("##", "") # Remove subword prefixes
if (
tag.startswith("B-")
or current_entity is None
or current_entity["label"] != entity_type
):
if current_entity:
merged_entities.append(current_entity)
current_entity = {
"start": token_start,
"end": token_end,
"label": entity_type,
"word": token_word,
}
elif (
tag.startswith("I-")
and current_entity
and current_entity["label"] == entity_type
):
current_entity["end"] = token_end
current_entity["word"] += token_word
else:
if (
current_entity
and token_start == current_entity["end"]
and current_entity["label"] == entity_type
):
current_entity["end"] = token_end
current_entity["word"] += token_word
else:
if current_entity:
merged_entities.append(current_entity)
current_entity = {
"start": token_start,
"end": token_end,
"label": entity_type,
"word": token_word,
}
if current_entity:
merged_entities.append(current_entity)
return merged_entities
uploaded_file = st.file_uploader(ui_text[lang]["upload"], type="txt")
if uploaded_file is not None:
try:
raw_content = uploaded_file.read()
detected = detect(raw_content)
encoding = detected["encoding"]
if encoding is None:
raise ValueError("Unable to detect file encoding.")
lines = raw_content.decode(encoding).splitlines()
line_results = []
for line in lines:
if line.strip():
results = ner(line)
merged_results = merge_entities(results)
line_results.append(merged_results)
else:
line_results.append([])
anonymize_mode = st.checkbox(ui_text[lang]["anonymize"])
selected_entities = None
if anonymize_mode:
detected_entity_tags = set()
for merged_results in line_results:
for entity in merged_results:
detected_entity_tags.add(entity["label"])
inverse_classes = {v: k for k, v in classes.items()}
detected_options = sorted([classes[tag] for tag in detected_entity_tags])
selected_options = st.multiselect(
ui_text[lang]["select_entities"],
options=detected_options,
default=detected_options,
)
selected_entities = [
inverse_classes[options] for options in selected_options
]
st.markdown(
"<hr style='margin-top: 10px; margin-bottom: 20px;'>",
unsafe_allow_html=True,
)
anonymized_lines = []
displayed_lines = []
for line, merged_results in zip(lines, line_results):
if line.strip():
if anonymize_mode:
anonymized_text = anonymize_text(
line, merged_results, selected_entities=selected_entities
)
displayed_lines.append(anonymized_text)
plain_text = re.sub(r"<.*?>", "", anonymized_text)
anonymized_lines.append(plain_text.strip())
else:
colored_html = color_substrings(line, merged_results)
st.markdown(f"{colored_html}", unsafe_allow_html=True)
else:
# displayed_lines.append("<br>")
anonymized_lines.append("")
if anonymize_mode:
original_file_name = uploaded_file.name
download_file_name = f"Anon_{original_file_name}"
anonymized_content = "\n".join(anonymized_lines)
for displayed_line in displayed_lines:
st.markdown(f"{displayed_line}", unsafe_allow_html=True)
st.markdown("<hr>", unsafe_allow_html=True)
st.download_button(
label=ui_text[lang]["download"],
data=anonymized_content,
file_name=download_file_name,
mime="text/plain",
)
else:
st.markdown("<hr>", unsafe_allow_html=True)
st.markdown(
f'<div class="tip"><strong>{ui_text[lang]["tip"]}</strong></div>',
unsafe_allow_html=True,
)
except Exception as e:
st.error(f"{ui_text[lang]['error']}{e}") |