Spaces:
Sleeping
Sleeping
Harshil Darji
commited on
Commit
·
56fe3c0
1
Parent(s):
347d235
Add app file
Browse files- app.py +308 -0
- requirements.txt +3 -0
app.py
ADDED
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import matplotlib.colors as mcolors
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import streamlit as st
|
7 |
+
from charset_normalizer import detect
|
8 |
+
from transformers import (
|
9 |
+
AutoModelForTokenClassification,
|
10 |
+
AutoTokenizer,
|
11 |
+
logging,
|
12 |
+
pipeline,
|
13 |
+
)
|
14 |
+
|
15 |
+
warnings.simplefilter(action="ignore", category=Warning)
|
16 |
+
logging.set_verbosity(logging.ERROR)
|
17 |
+
|
18 |
+
st.set_page_config(page_title="Legal NER", page_icon="⚖️", layout="wide")
|
19 |
+
|
20 |
+
st.markdown(
|
21 |
+
"""
|
22 |
+
<style>
|
23 |
+
body {
|
24 |
+
font-family: 'Poppins', sans-serif;
|
25 |
+
background-color: #f4f4f8;
|
26 |
+
}
|
27 |
+
.header {
|
28 |
+
background-color: rgba(220, 219, 219, 0.25);
|
29 |
+
color: #000;
|
30 |
+
padding: 5px 0;
|
31 |
+
text-align: center;
|
32 |
+
border-radius: 7px;
|
33 |
+
margin-bottom: 13px;
|
34 |
+
border-bottom: 2px solid #333;
|
35 |
+
}
|
36 |
+
.container {
|
37 |
+
background-color: #fff;
|
38 |
+
padding: 30px;
|
39 |
+
border-radius: 10px;
|
40 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
41 |
+
width: 100%;
|
42 |
+
max-width: 1000px;
|
43 |
+
margin: 0 auto;
|
44 |
+
position: absolute;
|
45 |
+
top: 50%;
|
46 |
+
left: 50%;
|
47 |
+
transform: translate(-50%, -50%);
|
48 |
+
}
|
49 |
+
.btn-primary {
|
50 |
+
background-color: #5477d1;
|
51 |
+
border: none;
|
52 |
+
transition: background-color 0.3s, transform 0.2s;
|
53 |
+
border-radius: 25px;
|
54 |
+
box-shadow: 0 1px 3px rgba(0, 0, 0, 0.08);
|
55 |
+
}
|
56 |
+
.btn-primary:hover {
|
57 |
+
background-color: #4c6cbe;
|
58 |
+
transform: translateY(-1px);
|
59 |
+
}
|
60 |
+
h2 {
|
61 |
+
font-weight: 600;
|
62 |
+
font-size: 24px;
|
63 |
+
margin-bottom: 20px;
|
64 |
+
}
|
65 |
+
label {
|
66 |
+
font-weight: 500;
|
67 |
+
}
|
68 |
+
.tip {
|
69 |
+
background-color: rgba(180, 47, 109, 0.25);
|
70 |
+
padding: 7px;
|
71 |
+
border-radius: 7px;
|
72 |
+
display: inline-block;
|
73 |
+
margin-top: 15px;
|
74 |
+
margin-bottom: 15px;
|
75 |
+
}
|
76 |
+
.sec {
|
77 |
+
background-color: rgba(220, 219, 219, 0.10);
|
78 |
+
padding: 7px;
|
79 |
+
border-radius: 5px;
|
80 |
+
display: inline-block;
|
81 |
+
margin-top: 15px;
|
82 |
+
margin-bottom: 15px;
|
83 |
+
}
|
84 |
+
.tooltip {
|
85 |
+
position: relative;
|
86 |
+
display: inline-block;
|
87 |
+
cursor: pointer;
|
88 |
+
}
|
89 |
+
.tooltip .tooltiptext {
|
90 |
+
visibility: hidden;
|
91 |
+
width: 120px;
|
92 |
+
background-color: #6c757d;
|
93 |
+
color: #fff;
|
94 |
+
text-align: center;
|
95 |
+
border-radius: 3px;
|
96 |
+
padding: 3px;
|
97 |
+
position: absolute;
|
98 |
+
z-index: 1;
|
99 |
+
bottom: 125%;
|
100 |
+
left: 50%;
|
101 |
+
margin-left: -60px;
|
102 |
+
opacity: 0;
|
103 |
+
transition: opacity 0.3s;
|
104 |
+
}
|
105 |
+
.tooltip:hover .tooltiptext {
|
106 |
+
visibility: visible;
|
107 |
+
opacity: 1;
|
108 |
+
}
|
109 |
+
.anonymized {
|
110 |
+
background-color: #ffcccb;
|
111 |
+
color: #000;
|
112 |
+
font-weight: bold;
|
113 |
+
border-radius: 3px;
|
114 |
+
padding: 2px 4px;
|
115 |
+
}
|
116 |
+
</style>
|
117 |
+
""",
|
118 |
+
unsafe_allow_html=True,
|
119 |
+
)
|
120 |
+
|
121 |
+
# Initialization for German Legal NER
|
122 |
+
tkn = os.getenv("tkn")
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained("harshildarji/JuraBERT", use_auth_token=tkn)
|
124 |
+
model = AutoModelForTokenClassification.from_pretrained(
|
125 |
+
"harshildarji/JuraBERT", use_auth_token=tkn
|
126 |
+
)
|
127 |
+
ner = pipeline("ner", model=model, tokenizer=tokenizer)
|
128 |
+
|
129 |
+
# Define class labels for the model
|
130 |
+
classes = {
|
131 |
+
"AN": "Lawyer",
|
132 |
+
"EUN": "European legal norm",
|
133 |
+
"GRT": "Court",
|
134 |
+
"GS": "Law",
|
135 |
+
"INN": "Institution",
|
136 |
+
"LD": "Country",
|
137 |
+
"LDS": "Landscape",
|
138 |
+
"LIT": "Legal literature",
|
139 |
+
"MRK": "Brand",
|
140 |
+
"ORG": "Organization",
|
141 |
+
"PER": "Person",
|
142 |
+
"RR": "Judge",
|
143 |
+
"RS": "Court decision",
|
144 |
+
"ST": "City",
|
145 |
+
"STR": "Street",
|
146 |
+
"UN": "Company",
|
147 |
+
"VO": "Ordinance",
|
148 |
+
"VS": "Regulation",
|
149 |
+
"VT": "Contract",
|
150 |
+
}
|
151 |
+
ner_labels = list(classes.keys())
|
152 |
+
|
153 |
+
|
154 |
+
# Function to generate a list of colors for visualization
|
155 |
+
def generate_colors(num_colors):
|
156 |
+
cm = plt.get_cmap("tab20")
|
157 |
+
colors = [mcolors.rgb2hex(cm(1.0 * i / num_colors)) for i in range(num_colors)]
|
158 |
+
return colors
|
159 |
+
|
160 |
+
|
161 |
+
# Function to color substrings based on NER results
|
162 |
+
def color_substrings(input_string, model_output):
|
163 |
+
colors = generate_colors(len(ner_labels))
|
164 |
+
label_to_color = {
|
165 |
+
label: colors[i % len(colors)] for i, label in enumerate(ner_labels)
|
166 |
+
}
|
167 |
+
|
168 |
+
last_end = 0
|
169 |
+
html_output = ""
|
170 |
+
|
171 |
+
for entity in sorted(model_output, key=lambda x: x["start"]):
|
172 |
+
start, end, label = entity["start"], entity["end"], entity["label"]
|
173 |
+
html_output += input_string[last_end:start]
|
174 |
+
tooltip = classes.get(label, "")
|
175 |
+
html_output += f'<span class="tooltip" style="color: {label_to_color.get(label)}; font-weight: bold;">{input_string[start:end]}<span class="tooltiptext">{tooltip}</span></span>'
|
176 |
+
last_end = end
|
177 |
+
|
178 |
+
html_output += input_string[last_end:]
|
179 |
+
|
180 |
+
return html_output
|
181 |
+
|
182 |
+
|
183 |
+
# Function to anonymize entities
|
184 |
+
def anonymize_text(input_string, model_output):
|
185 |
+
anonymized_text = ""
|
186 |
+
last_end = 0
|
187 |
+
|
188 |
+
for entity in sorted(model_output, key=lambda x: x["start"]):
|
189 |
+
start, end, label = entity["start"], entity["end"], entity["label"]
|
190 |
+
anonymized_text += input_string[last_end:start]
|
191 |
+
anonymized_text += (
|
192 |
+
f'<span class="anonymized">[{classes.get(label, label)}]</span>'
|
193 |
+
)
|
194 |
+
last_end = end
|
195 |
+
|
196 |
+
anonymized_text += input_string[last_end:]
|
197 |
+
|
198 |
+
return anonymized_text
|
199 |
+
|
200 |
+
|
201 |
+
def merge_entities(ner_results):
|
202 |
+
merged_entities = []
|
203 |
+
current_entity = None
|
204 |
+
|
205 |
+
for token in ner_results:
|
206 |
+
tag = token["entity"]
|
207 |
+
entity_type = tag.split("-")[-1] if "-" in tag else tag
|
208 |
+
token_start, token_end = token["start"], token["end"]
|
209 |
+
token_word = token["word"].replace("##", "") # Remove subword prefixes
|
210 |
+
|
211 |
+
# Start a new entity if necessary
|
212 |
+
if (
|
213 |
+
tag.startswith("B-")
|
214 |
+
or current_entity is None
|
215 |
+
or current_entity["label"] != entity_type
|
216 |
+
):
|
217 |
+
if current_entity:
|
218 |
+
merged_entities.append(current_entity)
|
219 |
+
current_entity = {
|
220 |
+
"start": token_start,
|
221 |
+
"end": token_end,
|
222 |
+
"label": entity_type,
|
223 |
+
"word": token_word,
|
224 |
+
}
|
225 |
+
elif (
|
226 |
+
tag.startswith("I-")
|
227 |
+
and current_entity
|
228 |
+
and current_entity["label"] == entity_type
|
229 |
+
):
|
230 |
+
# Extend the current entity
|
231 |
+
current_entity["end"] = token_end
|
232 |
+
current_entity["word"] += token_word
|
233 |
+
else:
|
234 |
+
# Handle misclassifications or gaps in tokens
|
235 |
+
if (
|
236 |
+
current_entity
|
237 |
+
and token_start == current_entity["end"]
|
238 |
+
and current_entity["label"] == entity_type
|
239 |
+
):
|
240 |
+
current_entity["end"] = token_end
|
241 |
+
current_entity["word"] += token_word
|
242 |
+
else:
|
243 |
+
# Treat it as a new entity if the above conditions aren't met
|
244 |
+
if current_entity:
|
245 |
+
merged_entities.append(current_entity)
|
246 |
+
current_entity = {
|
247 |
+
"start": token_start,
|
248 |
+
"end": token_end,
|
249 |
+
"label": entity_type,
|
250 |
+
"word": token_word,
|
251 |
+
}
|
252 |
+
|
253 |
+
# Append the last entity
|
254 |
+
if current_entity:
|
255 |
+
merged_entities.append(current_entity)
|
256 |
+
|
257 |
+
return merged_entities
|
258 |
+
|
259 |
+
|
260 |
+
st.title("Legal NER")
|
261 |
+
st.markdown("<hr>", unsafe_allow_html=True)
|
262 |
+
|
263 |
+
uploaded_file = st.file_uploader("Upload a .txt file", type="txt")
|
264 |
+
|
265 |
+
if uploaded_file is not None:
|
266 |
+
try:
|
267 |
+
# Read raw content of the file
|
268 |
+
raw_content = uploaded_file.read()
|
269 |
+
|
270 |
+
# Dynamically detect encoding
|
271 |
+
detected = detect(raw_content)
|
272 |
+
encoding = detected["encoding"]
|
273 |
+
|
274 |
+
if encoding is None:
|
275 |
+
raise ValueError("Unable to detect file encoding.")
|
276 |
+
|
277 |
+
# Decode file content with the detected encoding
|
278 |
+
lines = raw_content.decode(encoding).splitlines()
|
279 |
+
|
280 |
+
anonymize_mode = st.checkbox("Anonymize")
|
281 |
+
st.markdown(
|
282 |
+
"<hr style='margin-top: 10px; margin-bottom: 20px;'>",
|
283 |
+
unsafe_allow_html=True,
|
284 |
+
)
|
285 |
+
|
286 |
+
for line_number, line in enumerate(lines, start=1):
|
287 |
+
if line.strip():
|
288 |
+
results = ner(line)
|
289 |
+
merged_results = merge_entities(results)
|
290 |
+
|
291 |
+
if anonymize_mode:
|
292 |
+
anonymized_text = anonymize_text(line, merged_results)
|
293 |
+
st.markdown(f"{anonymized_text}", unsafe_allow_html=True)
|
294 |
+
else:
|
295 |
+
colored_html = color_substrings(line, merged_results)
|
296 |
+
st.markdown(f"{colored_html}", unsafe_allow_html=True)
|
297 |
+
|
298 |
+
else:
|
299 |
+
st.markdown("<br>", unsafe_allow_html=True)
|
300 |
+
|
301 |
+
if not anonymize_mode:
|
302 |
+
st.markdown(
|
303 |
+
'<div class="tip"><strong>Tip:</strong> Hover over the colored words to see its class.</div>',
|
304 |
+
unsafe_allow_html=True,
|
305 |
+
)
|
306 |
+
|
307 |
+
except Exception as e:
|
308 |
+
st.error(f"An error occurred while processing the file: {e}")
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
torch
|
3 |
+
matplotlib
|