Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
-
from gradio_webrtc import WebRTC
|
3 |
import cv2
|
|
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
def generation():
|
7 |
-
url = 0
|
8 |
-
cap = cv2.VideoCapture(url)
|
9 |
-
iterating = True
|
10 |
-
while iterating:
|
11 |
-
iterating, frame = cap.read()
|
12 |
-
frame=cv2.flip(frame,1)
|
13 |
-
yield frame
|
14 |
|
15 |
with gr.Blocks() as demo:
|
16 |
-
image = WebRTC(label="Stream", mode="receive", modality="video", height=480, width=640)
|
17 |
conf_threshold = gr.Slider(
|
18 |
label="Confidence Threshold",
|
19 |
minimum=0.0,
|
@@ -21,33 +62,11 @@ with gr.Blocks() as demo:
|
|
21 |
step=0.05,
|
22 |
value=0.30,
|
23 |
)
|
24 |
-
button = gr.Button("Start", variant="primary")
|
25 |
image.stream(
|
26 |
-
|
27 |
-
|
|
|
28 |
)
|
29 |
-
|
30 |
-
|
31 |
|
32 |
if __name__ == "__main__":
|
33 |
demo.launch()
|
34 |
-
# import gradio as gr
|
35 |
-
# from gradio_webrtc import WebRTC
|
36 |
-
|
37 |
-
|
38 |
-
# with gr.Blocks() as demo:
|
39 |
-
# image = WebRTC(label="Stream", mode="send-receive", modality="video")
|
40 |
-
# conf_threshold = gr.Slider(
|
41 |
-
# label="Confidence Threshold",
|
42 |
-
# minimum=0.0,
|
43 |
-
# maximum=1.0,
|
44 |
-
# step=0.05,
|
45 |
-
# value=0.30,
|
46 |
-
# )
|
47 |
-
# image.stream(
|
48 |
-
# inputs=[image, conf_threshold],
|
49 |
-
# outputs=[image], time_limit=10
|
50 |
-
# )
|
51 |
-
|
52 |
-
# if __name__ == "__main__":
|
53 |
-
# demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import cv2
|
3 |
+
from gradio_webrtc import WebRTC
|
4 |
import os
|
5 |
+
import mediapipe as mp
|
6 |
+
from mediapipe.tasks import python
|
7 |
+
from mediapipe.tasks.python import vision, BaseOptions
|
8 |
+
from mediapipe import solutions
|
9 |
+
from mediapipe.framework.formats import landmark_pb2
|
10 |
+
import numpy as np
|
11 |
+
import cv2
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
MODEL_PATH = r"pose_landmarker_heavy.task"
|
15 |
+
|
16 |
+
# Drawing landmarks
|
17 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
18 |
+
pose_landmarks_list = detection_result.pose_landmarks
|
19 |
+
annotated_image = np.copy(rgb_image)
|
20 |
+
|
21 |
+
for pose_landmarks in pose_landmarks_list:
|
22 |
+
pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
23 |
+
pose_landmarks_proto.landmark.extend([
|
24 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks
|
25 |
+
])
|
26 |
+
solutions.drawing_utils.draw_landmarks(
|
27 |
+
annotated_image,
|
28 |
+
pose_landmarks_proto,
|
29 |
+
solutions.pose.POSE_CONNECTIONS,
|
30 |
+
solutions.drawing_styles.get_default_pose_landmarks_style())
|
31 |
+
return annotated_image
|
32 |
+
|
33 |
+
|
34 |
+
base_options = python.BaseOptions(delegate=0,model_asset_path=MODEL_PATH)
|
35 |
+
options = vision.PoseLandmarkerOptions(
|
36 |
+
base_options=base_options,
|
37 |
+
output_segmentation_masks=True)
|
38 |
+
detector = vision.PoseLandmarker.create_from_options(options)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
def detection(image, conf_threshold=0.3):
|
43 |
+
frame = cv2.flip(image, 1)
|
44 |
+
rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
45 |
+
mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
|
46 |
+
|
47 |
+
# # Pose detection
|
48 |
+
detection_result = detector.detect(mp_image)
|
49 |
+
|
50 |
+
# Draw landmarks
|
51 |
+
annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), detection_result)
|
52 |
+
|
53 |
+
return annotated_image
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
with gr.Blocks() as demo:
|
57 |
+
image = WebRTC(label="Stream", mode="send-receive", modality="video", height=480, width=640, mirror_webcam=True)
|
58 |
conf_threshold = gr.Slider(
|
59 |
label="Confidence Threshold",
|
60 |
minimum=0.0,
|
|
|
62 |
step=0.05,
|
63 |
value=0.30,
|
64 |
)
|
|
|
65 |
image.stream(
|
66 |
+
fn=detection,
|
67 |
+
inputs=[image, conf_threshold],
|
68 |
+
outputs=[image]
|
69 |
)
|
|
|
|
|
70 |
|
71 |
if __name__ == "__main__":
|
72 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|