harshitface2003 commited on
Commit
d4fdd31
·
verified ·
1 Parent(s): f0fb3a4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +32 -30
app.py CHANGED
@@ -2,11 +2,11 @@ import gradio as gr
2
  import cv2
3
  from gradio_webrtc import WebRTC
4
  import os
5
- import mediapipe as mp
6
- from mediapipe.tasks import python
7
- from mediapipe.tasks.python import vision, BaseOptions
8
- from mediapipe import solutions
9
- from mediapipe.framework.formats import landmark_pb2
10
  import numpy as np
11
  import cv2
12
  from PIL import Image
@@ -14,43 +14,45 @@ from PIL import Image
14
  MODEL_PATH = r"pose_landmarker_lite.task"
15
 
16
  # Drawing landmarks
17
- def draw_landmarks_on_image(rgb_image, detection_result):
18
- pose_landmarks_list = detection_result.pose_landmarks
19
- annotated_image = np.copy(rgb_image)
20
 
21
- for pose_landmarks in pose_landmarks_list:
22
- pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
23
- pose_landmarks_proto.landmark.extend([
24
- landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks
25
- ])
26
- solutions.drawing_utils.draw_landmarks(
27
- annotated_image,
28
- pose_landmarks_proto,
29
- solutions.pose.POSE_CONNECTIONS,
30
- solutions.drawing_styles.get_default_pose_landmarks_style())
31
- return annotated_image
32
 
33
 
34
- base_options = python.BaseOptions(delegate=0,model_asset_path=MODEL_PATH)
35
- options = vision.PoseLandmarkerOptions(
36
- base_options=base_options,
37
- output_segmentation_masks=True)
38
- detector = vision.PoseLandmarker.create_from_options(options)
39
 
40
 
41
 
42
  def detection(image, conf_threshold=0.3):
43
  frame = cv2.flip(image, 1)
44
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
45
- mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
 
 
46
 
47
  # # Pose detection
48
- detection_result = detector.detect(mp_image)
49
 
50
- # Draw landmarks
51
- annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), detection_result)
52
 
53
- return annotated_image
54
 
55
 
56
  with gr.Blocks() as demo:
@@ -69,4 +71,4 @@ with gr.Blocks() as demo:
69
  )
70
 
71
  if __name__ == "__main__":
72
- demo.launch()
 
2
  import cv2
3
  from gradio_webrtc import WebRTC
4
  import os
5
+ # import mediapipe as mp
6
+ # from mediapipe.tasks import python
7
+ # from mediapipe.tasks.python import vision, BaseOptions
8
+ # from mediapipe import solutions
9
+ # from mediapipe.framework.formats import landmark_pb2
10
  import numpy as np
11
  import cv2
12
  from PIL import Image
 
14
  MODEL_PATH = r"pose_landmarker_lite.task"
15
 
16
  # Drawing landmarks
17
+ # def draw_landmarks_on_image(rgb_image, detection_result):
18
+ # pose_landmarks_list = detection_result.pose_landmarks
19
+ # annotated_image = np.copy(rgb_image)
20
 
21
+ # for pose_landmarks in pose_landmarks_list:
22
+ # pose_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
23
+ # pose_landmarks_proto.landmark.extend([
24
+ # landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in pose_landmarks
25
+ # ])
26
+ # solutions.drawing_utils.draw_landmarks(
27
+ # annotated_image,
28
+ # pose_landmarks_proto,
29
+ # solutions.pose.POSE_CONNECTIONS,
30
+ # solutions.drawing_styles.get_default_pose_landmarks_style())
31
+ # return annotated_image
32
 
33
 
34
+ # base_options = python.BaseOptions(delegate=0,model_asset_path=MODEL_PATH)
35
+ # options = vision.PoseLandmarkerOptions(
36
+ # base_options=base_options,
37
+ # output_segmentation_masks=True)
38
+ # detector = vision.PoseLandmarker.create_from_options(options)
39
 
40
 
41
 
42
  def detection(image, conf_threshold=0.3):
43
  frame = cv2.flip(image, 1)
44
  rgb_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
45
+
46
+ rgb_frame=cv2.circle(rgb_frame,(90,90),(255,0,0),20)
47
+ # mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=rgb_frame)
48
 
49
  # # Pose detection
50
+ # detection_result = detector.detect(mp_image)
51
 
52
+ # # Draw landmarks
53
+ # annotated_image = draw_landmarks_on_image(mp_image.numpy_view(), detection_result)
54
 
55
+ return rgb_frame
56
 
57
 
58
  with gr.Blocks() as demo:
 
71
  )
72
 
73
  if __name__ == "__main__":
74
+ demo.launch(share=True)