File size: 7,327 Bytes
1f6ce2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "806d60dd-cc27-4d23-add1-7cd28bbaa0fa",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\utils.py:953: UserWarning: Expected 1 arguments for function <function predict_user_profile at 0x000001DFE61E2840>, received 7.\n",
      "  warnings.warn(\n",
      "C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\utils.py:961: UserWarning: Expected maximum 1 arguments for function <function predict_user_profile at 0x000001DFE61E2840>, received 7.\n",
      "  warnings.warn(\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Running on local URL:  http://127.0.0.1:7861\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Traceback (most recent call last):\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\queueing.py\", line 527, in process_events\n",
      "    response = await route_utils.call_process_api(\n",
      "               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\route_utils.py\", line 270, in call_process_api\n",
      "    output = await app.get_blocks().process_api(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\blocks.py\", line 1847, in process_api\n",
      "    result = await self.call_function(\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\blocks.py\", line 1433, in call_function\n",
      "    prediction = await anyio.to_thread.run_sync(\n",
      "                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\anyio\\to_thread.py\", line 56, in run_sync\n",
      "    return await get_async_backend().run_sync_in_worker_thread(\n",
      "           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 2134, in run_sync_in_worker_thread\n",
      "    return await future\n",
      "           ^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\anyio\\_backends\\_asyncio.py\", line 851, in run\n",
      "    result = context.run(func, *args)\n",
      "             ^^^^^^^^^^^^^^^^^^^^^^^^\n",
      "  File \"C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\utils.py\", line 788, in wrapper\n",
      "    response = f(*args, **kwargs)\n",
      "               ^^^^^^^^^^^^^^^^^^\n",
      "TypeError: predict_user_profile() takes 1 positional argument but 7 were given\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Could not create share link. Missing file: C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\\frpc_windows_amd64_v0.2. \n",
      "\n",
      "Please check your internet connection. This can happen if your antivirus software blocks the download of this file. You can install manually by following these steps: \n",
      "\n",
      "1. Download this file: https://cdn-media.huggingface.co/frpc-gradio-0.2/frpc_windows_amd64.exe\n",
      "2. Rename the downloaded file to: frpc_windows_amd64_v0.2\n",
      "3. Move the file to this location: C:\\Users\\mistr\\anaconda3\\Lib\\site-packages\\gradio\n"
     ]
    },
    {
     "data": {
      "text/html": [
       "<div><iframe src=\"http://127.0.0.1:7861/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/plain": []
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import gradio as gr\n",
    "import pandas as pd\n",
    "import pickle\n",
    "from sklearn.preprocessing import LabelEncoder\n",
    "\n",
    "# Load the trained model from data.pkl\n",
    "def load_model():\n",
    "  with open('data.pkl', 'rb') as file:\n",
    "    model = pickle.load(file)\n",
    "  return model\n",
    "\n",
    "# Define the prediction function using the loaded model\n",
    "def predict_user_profile(inputs):\n",
    "  # Preprocess the input data\n",
    "  lang_encoder = LabelEncoder()\n",
    "  lang_code = lang_encoder.fit_transform([inputs['Language']])[0]\n",
    "\n",
    "  # Create a DataFrame from the user input dictionary\n",
    "  df = pd.DataFrame.from_dict([inputs])\n",
    "\n",
    "  # Select the relevant feature columns used during model training\n",
    "  feature_columns_to_use = ['statuses_count', 'followers_count', 'friends_count',\n",
    "                           'favourites_count', 'listed_count', 'lang_code']\n",
    "  df_features = df[feature_columns_to_use]\n",
    "\n",
    "  # Load the pre-trained model\n",
    "  model = load_model()\n",
    "\n",
    "  # Make predictions using the loaded model\n",
    "  prediction = model.predict(df_features)\n",
    "\n",
    "  # Return the predicted class label (0 for fake, 1 for genuine)\n",
    "  return \"Genuine\" if prediction[0] == 1 else \"Fake\"\n",
    "\n",
    "# Define the Gradio interface\n",
    "inputs = [\n",
    "  gr.Textbox(label=\"statuses_count\"),\n",
    "  gr.Textbox(label=\"followers_count\"),\n",
    "  gr.Textbox(label=\"friends_count\"),\n",
    "  gr.Textbox(label=\"favourites_count\"),\n",
    "  gr.Textbox(label=\"listed_count\"),\n",
    "  gr.Textbox(label=\"name\"),\n",
    "  gr.Textbox(label=\"Language\"),\n",
    "]\n",
    "\n",
    "outputs = gr.Textbox(label=\"Prediction\")\n",
    "\n",
    "# Create the Gradio interface\n",
    "interface = gr.Interface(fn=predict_user_profile, inputs=inputs, outputs=outputs,\n",
    "                         title='User Profile Classifier',\n",
    "                         description='Predict whether a user profile is genuine or fake.')\n",
    "\n",
    "interface.launch(share=True)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "02a483bc-0d49-45e5-908e-eab4769ac7af",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1443145-496e-4cc4-a516-0ea70e4cc1fb",
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58478763-b66d-4841-a965-089b1681b3c0",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}