File size: 5,512 Bytes
052e8a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import csv
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, roc_curve, auc

from sklearn.utils import shuffle
from sklearn.model_selection import learning_curve
import gender_guesser.detector as gender

def read_datasets():
    """ Reads users profile from csv files """
    genuine_users = pd.read_csv("data/users.csv")
    fake_users = pd.read_csv("data/fusers.csv")
    x = pd.concat([genuine_users, fake_users])
    y = [1] * len(genuine_users) + [0] * len(fake_users)
    return x, y

def predict_sex(names):
    sex_predictor = gender.Detector(case_sensitive=False)
    sex_code = []
    for name in names:
        first_name = name.split(' ')[0]
        sex = sex_predictor.get_gender(first_name)
        if sex == 'female':
            sex_code.append(2)
        # elif sex == 'mostly_female':
        #     sex_code.append(-1)
        elif sex == 'male':
            sex_code.append(1)
        # elif sex == 'mostly_male':
        #     sex_code.append(1)
        else:
            sex_code.append(0)  # Assign a default value for unknown genders
    return sex_code

def extract_features(x):
    

    x['sex_code'] = predict_sex(x['name'])

    feature_columns_to_use = ['statuses_count', 'followers_count', 'friends_count', 'favourites_count', 'listed_count', 'sex_code']
    x = x[feature_columns_to_use]
    return x

# Rest of your code...



def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    plt.xlabel("Training examples")
    plt.ylabel("Score")

    train_sizes, train_scores, test_scores = learning_curve(
        estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
    train_scores_mean = np.mean(train_scores, axis=1)
    train_scores_std = np.std(train_scores, axis=1)
    test_scores_mean = np.mean(test_scores, axis=1)
    test_scores_std = np.std(test_scores, axis=1)

    plt.grid()
    plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                     train_scores_mean + train_scores_std, alpha=0.1,
                     color="r")
    plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                     test_scores_mean + test_scores_std, alpha=0.1, color="g")
    plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
             label="Training score")
    plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
             label="Cross-validation score")

    plt.legend(loc="best")
    return plt

def plot_confusion_matrix(cm, title='Confusion matrix', cmap=plt.cm.Blues):
    target_names=['Fake','Genuine']
    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(target_names))
    plt.xticks(tick_marks, target_names, rotation=45)
    plt.yticks(tick_marks, target_names)
    plt.tight_layout()
    plt.ylabel('True label')
    plt.xlabel('Predicted label')

def plot_roc_curve(y_test, y_pred):
    false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test, y_pred)

    print("False Positive rate: ", false_positive_rate)
    print("True Positive rate: ", true_positive_rate)

    roc_auc = auc(false_positive_rate, true_positive_rate)

    plt.title('Receiver Operating Characteristic')
    plt.plot(false_positive_rate, true_positive_rate, 'b',
             label='AUC = %0.2f' % roc_auc)
    plt.legend(loc='lower right')
    plt.plot([0, 1], [0, 1], 'r--')
    plt.xlim([-0.1, 1.2])
    plt.ylim([-0.1, 1.2])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.show()

def train(X_train, y_train, X_test):
    """ Trains and predicts dataset with a Random Forest classifier """
    clf = RandomForestClassifier(n_estimators=40, oob_score=True)
    clf.fit(X_train, y_train)
    print("The best classifier is: ", clf)
    
    # Estimate score
    scores = cross_val_score(clf, X_train, y_train, cv=5)
    print(scores)
    print('Estimated score: %0.5f (+/- %0.5f)' % (scores.mean(), scores.std() / 2))

    title = 'Learning Curves (Random Forest)'
    plot_learning_curve(clf, title, X_train, y_train, cv=5)
    plt.show()

    # Predict
    y_pred = clf.predict(X_test)
    import pickle
    with open('data.pkl','wb') as file:
        pickle.dump(clf,file)
    return y_test, y_pred

print("Reading datasets...\n")
x, y = read_datasets()
x.describe()

print("Extracting features...\n")
x = extract_features(x)
print(x.columns)
print(x.describe())

print("Splitting datasets into train and test dataset...\n")
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=44)

print("Training datasets...\n")
y_test, y_pred = train(X_train, y_train, X_test)

print('Classification Accuracy on Test dataset: ', accuracy_score(y_test, y_pred))



cm = confusion_matrix(y_test, y_pred)
print('Confusion matrix, without normalization')
print(cm)
plot_confusion_matrix(cm)

cm_normalized = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print('Normalized confusion matrix')
print(cm_normalized)
plot_confusion_matrix(cm_normalized, title='Normalized confusion matrix')

print(classification_report(y_test, y_pred, target_names=['Fake', 'Genuine']))

plot_roc_curve(y_test, y_pred)