predictt / app.py
harshiv's picture
Update app.py
07f473b
raw
history blame
2.87 kB
import pandas as pd
import sklearn
from sklearn.compose import ColumnTransformer
from sklearn.ensemble import RandomForestClassifier
from sklearn.impute import SimpleImputer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import LabelEncoder, StandardScaler
from streamlit import *
import joblib
# Load the CSV data
data = pd.read_csv('dataset.csv')
# Split the data into features and labels
X = data.drop('PlacedOrNot', axis=1)
y = data['PlacedOrNot']
# Encode categorical features
categorical_features = ['HistoryOfBacklogs']
for feature in categorical_features:
encoder = LabelEncoder()
X[feature] = encoder.fit_transform(X[feature])
# Split the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Create the pipeline
numerical_features = ['Internships', 'CGPA']
numerical_transformer = StandardScaler()
categorical_features = [ 'HistoryOfBacklogs']
categorical_transformer = SimpleImputer(strategy='most_frequent')
preprocessor = ColumnTransformer(
transformers=[
('num', numerical_transformer, numerical_features),
('cat', categorical_transformer, categorical_features)
])
pipeline = Pipeline([
('preprocessor', preprocessor),
('classifier', RandomForestClassifier(random_state=42))
])
# Train the model
pipeline.fit(X_train, y_train)
# Evaluate the model
accuracy = pipeline.score(X_test, y_test)
print('Accuracy:', accuracy)
joblib.dump(pipeline, 'student_placement_model.joblib')
# Define Streamlit API
def predict_placement(internships, cgpa, history_of_backlogs, stream):
# Load the trained pipeline
pipeline = joblib.load('student_placement_model.joblib')
# Prepare input data
input_data = pd.DataFrame({'internships': [internships],
'cgpa': [cgpa],
'history_of_backlogs': [history_of_backlogs],
'stream': [stream]})
# Make prediction
prediction = pipeline.predict(input_data)
return prediction[0]
# Define Streamlit web app
def streamlit_app():
title('Student Placement Prediction')
internships = number_input('Number of internships:', min_value=0, max_value=10, step=1)
cgpa = number_input('CGPA:', min_value=0.0, max_value=10.0, step=0.1)
history_of_backlogs = number_input('Number of history of backlogs:', min_value=0, max_value=10, step=1)
stream = selectbox('Stream:', options=['Science', 'Commerce', 'Arts'])
prediction = predict_placement(internships, cgpa, history_of_backlogs, stream)
if prediction == 1:
result = 'Placed'
else:
result = 'Not Placed'
button('Predict Placement')
write(f'Result: {result}')
if __name__ == '__main__':
streamlit_app()