Spaces:
Build error
Build error
File size: 8,583 Bytes
248e491 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import streamlit as st
import pandas as pd
import os
from intro import Intro # importing function from python file from same directory
st.set_page_config(
page_title="Automated ML",
page_icon="🤖",
layout="wide",
initial_sidebar_state="expanded",
)
page_bg_img_link = f"""
<style>
[data-testid="stAppViewContainer"]> .main{{
background-color: #FFDEE9;
background-image: linear-gradient(0deg, #B5FFFC 0%, #FFDEE9 100%);
}}
[data-testid="stHeader"]{{
background-color: rgba(0,0,0,0)
}}
[data-testid="stToolbar"]{{
right : 2 rem;
}}
[data-testid="stSidebar"] > div:first-child{{
background: linear-gradient(to right bottom,
rgba(285,205,205,0.7),
rgba(285,205,205,0.3));
}}
</style>
"""
st.markdown(page_bg_img_link, unsafe_allow_html=True)
# Import profiling capability
from ydata_profiling import profile_report
from streamlit_pandas_profiling import st_profile_report
# ML Pycaret Modules
from pycaret.classification import (
setup as classification_setup,
compare_models as classification_compare_model,
pull as classification_pull,
predict_model as classification_predict_model,
save_model as classification_save_model,
)
from pycaret.regression import (
setup as regression_setup,
compare_models as regression_compare_models,
pull as regression_pull,
predict_model as regression_predict_model,
save_model as regression_save_model,
)
from pycaret.clustering import (
setup as clustering_steup,
pull as clustering_pull,
create_model as clustering_create_model,
predict_model as clustering_predict_model,
plot_model as clustering_plot_model,
save_model as clustering_save_model,
)
from pycaret.anomaly import (
setup as anomaly_setup,
pull as anomaly_pull,
create_model as anomaly_create_model,
models as anomaly_models,
plot_model as anomaly_plot_model,
assign_model as anomaly_assign_model,
save_model as anomaly_save_model,
)
def main():
st.sidebar.image("https://www.onepointltd.com/wp-content/uploads/2020/03/inno2.png")
st.sidebar.title("AutoStreamML")
choice = st.sidebar.radio(
"Navigation", ["Instruction", "Upload", "Profiling", "ML", "Download"]
)
st.sidebar.info(
"This Application allows us to build an automated ML Pipeline using Streamlit, Pandas and PyCaret. And it's magic!"
)
if os.path.exists("Sourcedata.csv"):
df = pd.read_csv("Sourcedata.csv", index_col=None)
else:
df = None
## Section1 - Instruction ##
if choice == "Instruction":
Intro()
## Section2 - Upload ##
elif choice == "Upload":
upload_section(df)
## Section3 - Profiling dataset ##
elif choice == "Profiling":
profiling_section(df)
## Section4 - Machine Learning ##
elif choice == "ML":
ml_section(df)
## Section5 - Download pipeline ##
elif choice == "Download":
download_section()
## Section2 - Upload ##
def upload_section(df):
st.title("Upload Your Data for Modelling!")
file = st.file_uploader("Upload Your Dataset Here")
if file:
df = pd.read_csv(file, index_col=None)
df.to_csv("Sourcedata.csv", index=None)
st.dataframe(df)
## Section3 - Profiling dataset ##
def profiling_section(df):
st.title("Automated Exploratory Data Analysis")
if df is not None:
profile_report = df.profile_report()
st_profile_report(profile_report)
else:
st.info("Upload a dataset for profiling.")
## Section4 - Machine Learning ##
def ml_section(df):
st.title("Machine Learning Go 🤘🤘🤘")
model = st.radio(
"Select Your Model",
[
"Classification",
"Regression",
"Clustering",
"Anomaly Detection",
],
)
if model == "Classification":
classification_subsection(df)
elif model == "Regression":
regression_subsection(df)
elif model == "Clustering":
clustering_subsection(df)
elif model == "Anomaly Detection":
AnomalyDetection_subsection(df)
# Add other model subsections here
## for CLASSIFICATION
def classification_subsection(df):
st.subheader("Classification")
chosen_target = st.selectbox("Select Your Target for Classification", df.columns)
if st.button("Train Model"):
st.info("This is dataset")
st.dataframe(df.head())
classification_setup(df, target=chosen_target)
setup_df = classification_pull()
st.info("This is ML Experiment Settings ")
st.dataframe(setup_df)
best_model = classification_compare_model()
compare_df = classification_pull()
st.info("This is the ML Model")
st.dataframe(compare_df)
predict = classification_predict_model(best_model)
compare_df = classification_pull()
st.info("This is predicted value of best Model")
st.dataframe(predict)
classification_save_model(best_model, "best_model")
## for Regression
def regression_subsection(df):
st.subheader("Regression")
chosen_target = st.selectbox("Select Your Target for Regresssion", df.columns)
if st.button("Train Model"):
st.info("This is dataset")
st.dataframe(df.head())
regression_setup(df, target=chosen_target)
setup_df = regression_pull()
st.info("This is ML Experiment Settings ")
st.dataframe(setup_df)
best_model = regression_compare_models()
compare_df = regression_pull()
st.info("This is the ML Model")
st.dataframe(compare_df)
predict = regression_predict_model(best_model)
st.info("This is predicted value of best Model")
st.dataframe(predict)
regression_save_model(best_model, "best_model")
## for Clustering
def clustering_subsection(df):
st.subheader("Clustering")
st.info("We are using KMean Clustering Method : ")
if st.button("Train Model"):
st.info("This is dataset")
st.dataframe(df.head())
clustering_steup(df)
setup_df = clustering_pull()
st.info("This is ML Experiment Settings ")
st.dataframe(setup_df)
kmeans = clustering_create_model("kmeans")
created_model_df = clustering_pull()
st.info("This is the ML Kmean Clustering Model")
st.dataframe(created_model_df)
predict = clustering_predict_model(kmeans, data=df)
# predict_df = clustering_pull()
st.info(
"generates cluster labels using a trained model to Kmean Clustering Model"
)
st.dataframe(predict)
clustering_save_model(kmeans, "best_model")
plot_mod = clustering_plot_model(kmeans)
plot_mod
## for Anomaly Detection
def AnomalyDetection_subsection(df):
st.subheader("Anomaly Detection")
method = st.selectbox(
"Select Your method",
[
"iforest",
"knn",
"svm",
"abod",
"cluster",
],
)
if st.button("Train Model"):
st.info("This is dataset")
st.dataframe(df.head())
anomaly_setup(df, session_id=123)
setup_df = anomaly_pull()
st.info("This is ML Experiment Settings ")
st.dataframe(setup_df)
iforest = anomaly_create_model(method) # we use iforest model
models = anomaly_models()
st.info("We use these models for anomaly detection ! ")
st.dataframe(models)
st.info(
"predict anomaly labels to the dataset for a given model. (1 = outlier, 0 = inlier)"
)
predictions = anomaly_assign_model(iforest)
st.dataframe(predictions)
anomaly_save_model(iforest, "best_model")
plot_mod = anomaly_plot_model(iforest)
plot_mod
## Section5 - Download pipeline ##
def download_section():
st.title("Download trained pipeline!")
with open("best_model.pkl", "rb") as file:
st.download_button("Download", file, "trained_model.pkl")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
st.markdown("""""")
with st.container():
col = st.columns([1])
# HARSH #
with col[0]:
st.write(
"This app was created by [Harsh Narayan](https://portfolio-7bwl.onrender.com/)"
)
if __name__ == "__main__":
main()
|