File size: 30,487 Bytes
eeca63f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 |
import streamlit as st
import os
import numpy as np
import pandas as pd
import tensorflow as tf
st.set_page_config(
page_title="prediction",
page_icon="🎃",
layout="wide",
initial_sidebar_state="expanded",
)
page_bg_img_link = f"""
<style>
[data-testid="stAppViewContainer"]> .main{{
# background-image: url(https://www.orfonline.org/wp-content/uploads/2022/10/mental-health-wellness-during-covid-19.jpg);
# background-size:cover;
# background-position: left;
# background-repeat:no-repeat;
# background-attachment:local;
background-color: #FFDEE9;
background-image: linear-gradient(0deg, #FFDEE9 0%, #B5FFFC 100%);
}}
[data-testid="stHeader"]{{
background-color: rgba(0,0,0,0)
}}
[data-testid="stToolbar"]{{
right : 2 rem;
}}
[data-testid="stSidebar"] > div:first-child{{
background: linear-gradient(to right bottom,
rgba(255,225,225,0.7),
rgba(255,225,225,0.3));
}}
[data-baseweb="tab-list"]{{
display : flex ;
justify-content:center;
gap:3rem;
border-radius: 15px;
background-color: hsla(7.2, 100%, 77.1%, 0.62);
}}
[data-testid="stMarkdownContainer"] > p {{
color : black;
font-size:16px;
font-family: Open Sans, sans-serif;
}}
[data-testid="baseButton-secondary" ] {{
background-color: white;
}}
</style>
"""
st.markdown(page_bg_img_link, unsafe_allow_html=True)
with st.sidebar:
# st.markdown(
# '<div style=" font-family: Mali, cursive;text-align: center; font-size:30px; color:#ff725e; margin :10px">Mental Health</div>',
# unsafe_allow_html=True,
# )
st.image(
"Mental health-pana.png",
width=320,
)
@st.cache_resource
def Load_mode():
model = tf.keras.models.load_model("train.h5")
return model
# @st.cache_resource
# def Load_mode():
# with open("train.pkl", "rb") as file:
# model = pickle.load(file)
# return model
# to play with streamlit css properties we use streamlit coponents
import streamlit.components.v1 as components
def Prediction():
if os.path.exists("Sourcedata.csv"):
df = pd.read_csv("Sourcedata.csv", index_col=None)
else:
df = None
title = st.markdown(
'<div style=" font-family: Mali, cursive;text-align: center; font-size:3.5rem; color: rgb(69, 90, 100); margin-bottom :4rem; ">Intersted to know Mental Health Status!</div>',
unsafe_allow_html=True,
)
Age = st.slider("What is your age?", 0, 100)
# Age = st.number_input("Enter your age!")
cols = st.columns([1, 1])
with st.container():
with cols[0]:
Sex = st.radio("Select Gender", ["Male", "Female"])
with cols[1]:
Location = st.radio("Select your Location", ["Urban", "Rural"])
with st.container():
tab1, tab2, tab3, tab4, tab5 = st.tabs(
[
"Coping Strategies ",
"Shyness ",
"Loneliness ",
"Self Esteem ",
"Life satisfaction ",
]
)
with tab1:
# Coping Strategies
# CS- Self Distraction
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left; color:black;">Self Distraction : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
SD1 = st.radio(
"1 - I've been turning to work or other activities to take my mind off things.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
SD2 = st.radio(
"2 - I've been doing something to think about it less, such as going to movies, watching TV, reading, daydreaming, sleeping or shopping.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# CS- Denial
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Denial : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
D1 = st.radio(
"1 - I've been saying to myself, this isn't real.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
D2 = st.radio(
"2 - I've been refusing to believe that it has happened.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# CS - Venting
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Venting : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
V1 = st.radio(
"1 - I've been saying things to let my unpleasant feelings escape.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
V2 = st.radio(
"2 - I've been expressing my negative feelings.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# CS - Self-blame
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Self-blame : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
SB1 = st.radio(
"1 - I've been criticizing myself.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
SB2 = st.radio(
"2 - I've been blaming myself for things that happened.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# CS - Behavioural Disengagement
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Behavioural Disengagement : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
BD1 = st.radio(
"1 - I've been giving up trying to deal with it.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
BD2 = st.radio(
"2 - I've been giving up the attempt to cope.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# CS - Acceptance
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Acceptance : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
A1 = st.radio(
"1 - I've been accepting the reality of the fact that it has happened.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
A2 = st.radio(
"2 - I've been learning to live with it.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
# cs- Active Coping
st.markdown(
'<div style="margin-top: 40px; color:black; font-size: 1.6rem;font-weight: 300;text-align: left;">Active Coping : </div>',
unsafe_allow_html=True,
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
AC1 = st.radio(
"1 - I've been concentrating my efforts on doing something about the situation I'm in.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with cols[1]:
AC2 = st.radio(
"2 - I've been taking action to try to make the situation better.",
options=["Never", "Rarely", "Sometimes", "Often", "Very Often"],
)
with tab2:
# Shyness
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
S1 = st.radio(
"1 - I feel tense when I'm with people I don't know.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[1]:
S2 = st.radio(
"2 - I am socially somewhat awkward.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[2]:
S3 = st.radio(
"3 - I am often uncomfortable at parties and other social functions.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
S4 = st.radio(
"4 - When in a group of people, I have trouble thinking of the right things to talk about.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[1]:
S5 = st.radio(
"5 - It is hard for me to act natural when I am meeting new people.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[2]:
S6 = st.radio(
"6 - I feel nervous when speaking to someone in authority.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
S7 = st.radio(
"7 - I have trouble looking someone right in the eye.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[1]:
S8 = st.radio(
"8 - I feel inhibited in social situations.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with cols[2]:
S9 = st.radio(
"9 - I am more shy with members of the opposite sex.",
options=[
"Not at all",
"Slightly",
"Moderately",
"Very",
"Completely",
],
)
with tab3:
# Loneliness
cols = st.columns([1, 1])
with st.container():
with cols[0]:
L1 = st.radio(
"1 - I am a lonely person.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
L2 = st.radio(
"2 - I always will be a lonely person.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
cols = st.columns([1, 1])
with st.container():
with cols[0]:
L3 = st.radio(
"3 - Other people think of me as a lonely person.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
L4 = st.radio(
"4 - I always was a lonely person.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with tab4:
# Self Esteem
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
SE1 = st.radio(
"1 - On the whole, I am satisfied with myself.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
SE2 = st.radio(
"2 - I feel that I have a number of good qualities..",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[2]:
SE3 = st.radio(
"3 - I am able to do things as well as most other people.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
SE4 = st.radio(
"4 - I feel that I'm a person of worth, at least on an equal plane with others.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
SE5 = st.radio(
"5 - I take positive attitude toward myself.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with tab5:
# Life satisfaction
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
LS1 = st.radio(
"1 - In most ways my life is close to my ideal.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
LS2 = st.radio(
"2 - The conditions of my life are excellent.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[2]:
LS3 = st.radio(
"3 - I am satisfied with my life.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
cols = st.columns([1, 1, 1])
with st.container():
with cols[0]:
LS4 = st.radio(
"4 - So far I have gotten the important things I want in life.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
with cols[1]:
LS5 = st.radio(
"5 - If I could live my life over I would change almost nothing.",
options=[
"Strongly Disagree",
"Disagree",
"Neutral",
"Agree",
"Strongly Agree",
],
)
run = st.button("Submit")
##Data gathering is completed for prediction##
# making dataframe of data given by user for prediction
df = pd.DataFrame(
{
"Age": [Age],
"Sex": [Sex],
"Location": [Location],
"SD1": [SD1],
"SD2": [SD2],
"D1": [D1],
"D2": [D2],
"V1": [V1],
"V2": [V2],
"SB1": [SB1],
"SB2": [SB2],
"BD1": [BD1],
"BD2": [BD2],
"A1": [A1],
"A2": [A2],
"AC1": [AC1],
"AC2": [AC2],
"S1": [S1],
"S2": [S2],
"S3": [S3],
"S4": [S4],
"S5": [S5],
"S6": [S6],
"S7": [S7],
"S8": [S8],
"S9": [S9],
"L1": [L1],
"L2": [L2],
"L3": [L3],
"L4": [L4],
"SE1": [SE1],
"SE2": [SE2],
"SE3": [SE3],
"SE4": [SE4],
"SE5": [SE5],
"LS1": [LS1],
"LS2": [LS2],
"LS3": [LS3],
"LS4": [LS4],
"LS5": [LS5],
}
)
# user data preprocessing
# Gender
def clean_gender(x):
if x == "Male":
return 1
elif x == "Female":
return 0
elif x == "There is no other gender. It’s either him/her":
return 1
elif x == "Non binary":
return 0
return int(x)
df["Sex"] = df["Sex"].apply(clean_gender)
# Location
def clean_location(x):
if x == "Urban":
return 1
if x == "Rural":
return 0
return int(x)
df["Location"] = df["Location"].apply(clean_location)
# General_Psychopathology AND Shyness
def clean_General_Psychopathology(x):
if x == "Not at all":
return 1
elif x == "Slightly":
return 2
elif x == "Moderately":
return 3
elif x == "Very":
return 4
elif x == "Completely":
return 5
return int(x)
# General_Psychopathology AND Shyness
def clean_General_Psychopathology(x):
if x == "Not at all":
return 1
elif x == "Slightly":
return 2
elif x == "Moderately":
return 3
elif x == "Very":
return 4
elif x == "Completely":
return 5
return int(x)
df["S1"] = df["S1"].apply(clean_General_Psychopathology)
df["S2"] = df["S2"].apply(clean_General_Psychopathology)
df["S3"] = df["S3"].apply(clean_General_Psychopathology)
df["S4"] = df["S4"].apply(clean_General_Psychopathology)
df["S5"] = df["S5"].apply(clean_General_Psychopathology)
df["S6"] = df["S6"].apply(clean_General_Psychopathology)
df["S7"] = df["S7"].apply(clean_General_Psychopathology)
df["S8"] = df["S8"].apply(clean_General_Psychopathology)
df["S9"] = df["S9"].apply(clean_General_Psychopathology)
# Coping Strategies
def Coping_Strategies(x):
if x == "Never":
return 1
elif x == "Rarely":
return 2
elif x == "Sometimes":
return 3
elif x == "Often":
return 4
elif x == "Very Often":
return 5
return int(x)
df["SD1"] = df["SD1"].apply(Coping_Strategies)
df["SD2"] = df["SD2"].apply(Coping_Strategies)
df["D1"] = df["D1"].apply(Coping_Strategies)
df["D2"] = df["D2"].apply(Coping_Strategies)
df["V1"] = df["V1"].apply(Coping_Strategies)
df["V2"] = df["V2"].apply(Coping_Strategies)
df["SB1"] = df["SB1"].apply(Coping_Strategies)
df["SB2"] = df["SB2"].apply(Coping_Strategies)
df["BD1"] = df["BD1"].apply(Coping_Strategies)
df["BD2"] = df["BD2"].apply(Coping_Strategies)
df["A1"] = df["A1"].apply(Coping_Strategies)
df["A2"] = df["A2"].apply(Coping_Strategies)
df["AC1"] = df["AC1"].apply(Coping_Strategies)
df["AC2"] = df["AC2"].apply(Coping_Strategies)
# Loneliness & Self_Esteem & Life_Satisfaction
def Loneliness_Self_Esteem_Life_Satisfaction(x):
if x == "Strongly Disagree":
return 1
elif x == "Disagree":
return 2
elif x == "Neutral":
return 3
elif x == "Agree":
return 4
elif x == "Strongly Agree":
return 5
return int(x)
df["L1"] = df["L1"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["L2"] = df["L2"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["L3"] = df["L3"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["L4"] = df["L4"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["SE1"] = df["SE1"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["SE2"] = df["SE2"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["SE3"] = df["SE3"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["SE4"] = df["SE4"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["SE5"] = df["SE5"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["LS1"] = df["LS1"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["LS2"] = df["LS2"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["LS3"] = df["LS3"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["LS4"] = df["LS4"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
df["LS5"] = df["LS5"].apply(Loneliness_Self_Esteem_Life_Satisfaction)
# Rename the column afer taking mean within each section
df["Self_Distraction"] = df[["SD1", "SD2"]].mean(axis=1)
df["Denial"] = df[["D1", "D2"]].mean(axis=1)
df["Venting"] = df[["V1", "V2"]].mean(axis=1)
df["Self_Blame"] = df[["SB1", "SB2"]].mean(axis=1)
df["Behavioural_Disengagement"] = df[["BD1", "BD2"]].mean(axis=1)
df["Acceptance"] = df[["A1", "A2"]].mean(axis=1)
df["Active_Coping"] = df[["AC1", "AC2"]].mean(axis=1)
df["Shyness"] = df[["S1", "S2", "S3", "S4", "S5", "S6", "S7", "S8", "S9"]].mean(
axis=1
)
df["Loneliness"] = df[["L1", "L2", "L3", "L4"]].mean(axis=1)
df["Self_Esteem"] = df[["SE1", "SE2", "SE3", "SE4", "SE5"]].mean(axis=1)
df["Life_Satisfaction"] = df[["LS1", "LS2", "LS3", "LS4", "LS5"]].mean(axis=1)
# Drop cloumns old columns after making new columns by using old clumns
df = df.drop(
[
"SD1",
"SD2",
"D1",
"D2",
"V1",
"V2",
"SB1",
"SB2",
"BD1",
"BD2",
"A1",
"A2",
"AC1",
"AC2",
"S1",
"S2",
"S3",
"S4",
"S5",
"S6",
"S7",
"S8",
"S9",
"L1",
"L2",
"L3",
"L4",
"SE1",
"SE2",
"SE3",
"SE4",
"SE5",
"LS1",
"LS2",
"LS3",
"LS4",
"LS5",
],
axis=1,
)
# prediction
# Age, Gender , General_Psychopathology ,Self_Distraction,Denial,Venting,Self_Blame,Behavioural_Disengagement,Acceptance,Active_Coping,Shyness,Loneliness,Self_Esteem,Life_Satisfaction
if run:
model = Load_mode()
X = np.array(
[
df["Age"],
df["Sex"],
df["Location"],
df["Self_Distraction"],
df["Denial"],
df["Venting"],
df["Self_Blame"],
df["Behavioural_Disengagement"],
df["Acceptance"],
df["Active_Coping"],
df["Shyness"],
df["Loneliness"],
df["Self_Esteem"],
df["Life_Satisfaction"],
]
).reshape(1, 14)
health = model.predict(X)
# Training set predictions converted to categories
if health >= 1 and health < 2:
health_2 = "Healthy"
elif health >= 2 and health <= 3.5:
health_2 = "Mild"
else:
health_2 = "Severe"
# st.markdown(f" Mental condition seems {health}.")
st.markdown(
'<div style=" color:black; font-size: 1.5rem; font-weight: 50; "> Results: </div>',
unsafe_allow_html=True,
)
if health_2 == "Healthy":
st.markdown(
'<div style=" padding-left: 40px; padding-right: 40px; padding-top: 20px; padding-bottom: 20px; color:black; font-size: 1.4rem;border-radius:1rem; font-weight: 50;background-color:rgba(61, 166, 198, 0.22) "> Hello! your answers indicate that you are doing great in your life. We are here to remind you to keep up the great work in maintaining and prioritizing your mental well-being. Whether you are enjoying your favorite activities or connecting with loved ones, keep making those positive choices and taking care of yourself. Wishing you continued wellness and happiness, cheers!</div>',
unsafe_allow_html=True,
)
elif health_2 == "Mild":
st.markdown(
'<div style=" padding-left: 40px; padding-right: 40px;padding-top: 20px; padding-bottom: 20px; color:black; font-size: 1.4rem;border-radius:1rem; font-weight: 50;background-color:rgba(61, 166, 198, 0.22) "> Hello there, based on your answers you seem to do well but we observe that you are struggling to keep up with it. It is completely normal to face challenges. We recommend considering a chat with friends, family, or a mental health professional for additional support. Remember, taking steps for your mental well-being is a positive choice. </div>',
unsafe_allow_html=True,
)
elif health_2 == "Severe":
st.markdown(
'<div style=" padding-left: 40px; padding-right: 40px;padding-top: 20px; padding-bottom: 20px; color:black; font-size: 1.4rem;border-radius:1rem; font-weight: 50;background-color:rgba(61, 166, 198, 0.22) ">Hey there, looks like you might be going through a tough time, consider talking to a mental health professional or someone you trust. They can provide support and guidance. Remember, it is okay to seek help. Take care.</div>',
unsafe_allow_html=True,
)
return health_2
if __name__ == "__main__":
Prediction()
|