|
import pickle |
|
import streamlit as st |
|
|
|
def recommend(movie): |
|
index = movies[movies['Title'] == movie].index[0] |
|
distances = sorted(list(enumerate(similarity[index])), reverse=True, key=lambda x: x[1]) |
|
recommended_movie_names = [] |
|
for i in distances[1:6]: |
|
recommended_movie_names.append(movies.iloc[i[0]].Title) |
|
|
|
return recommended_movie_names |
|
|
|
|
|
page_bg_img = ''' |
|
<style> |
|
|
|
.stApp { |
|
background-image: url("https://payload.cargocollective.com/1/11/367710/13568488/MOVIECLASSICSerikweb_2500_800.jpg"); |
|
background-size: cover; |
|
} |
|
</style> |
|
''' |
|
|
|
st.markdown(page_bg_img, unsafe_allow_html=True) |
|
|
|
st.markdown('# Movie Recommendation System') |
|
movies = pickle.load(open('movie_list.pkl', 'rb')) |
|
similarity = pickle.load(open('similarity.pkl', 'rb')) |
|
|
|
movie_list = movies['Title'].values |
|
selected_movie = st.selectbox( |
|
"Type or select a movie from the dropdown", |
|
movie_list |
|
) |
|
|
|
if st.button('Show Recommendation'): |
|
recommended_movie_names = recommend(selected_movie) |
|
for i in recommended_movie_names: |
|
st.subheader(i) |