Spaces:
Sleeping
Sleeping
import streamlit as st | |
from deep_translator import GoogleTranslator | |
from streamlit_mic_recorder import speech_to_text | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | |
from sentence_transformers import SentenceTransformer, util | |
import json | |
import time | |
st.set_page_config(layout="wide") | |
# Language dictionaries | |
language_dict = { | |
'English': 'en', 'Hindi': 'hi', 'Bengali': 'bn', 'Gujarati': 'gu', 'Marathi': 'mr', | |
'Telugu': 'te', 'Tamil': 'ta', 'Punjabi': 'pa', 'Odia': 'or', 'Nepali': 'ne', 'Malayalam': 'ml' | |
} | |
nllb_langs = { | |
'English':'eng_Latn','Hindi':'hin_Deva','Punjabi':'pan_Guru','Odia':'ory_Orya', | |
'Bengali':'ben_Beng','Telugu':'tel_Telu','Tamil':'tam_Taml','Nepali':'npi_Deva', | |
'Marathi':'mar_Deva','Malayalam':'mal_Mlym','Gujarati':'guj_Gujr' | |
} | |
CHAT_FILE = "chat_data.json" | |
def load_nllb_model(): | |
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") | |
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") | |
translator = pipeline('translation', model=model, tokenizer=tokenizer) | |
return translator | |
def load_sentence_model(): | |
return SentenceTransformer("google/muril-base-cased") | |
translator_nllb = load_nllb_model() | |
sentence_model = load_sentence_model() | |
def load_messages(): | |
try: | |
with open(CHAT_FILE, "r") as file: | |
return json.load(file) | |
except (FileNotFoundError, json.JSONDecodeError): | |
return [] | |
def save_messages(messages): | |
with open(CHAT_FILE, "w") as file: | |
json.dump(messages, file) | |
def translate_text_multimodel(text, source_lang_name, target_lang_name): | |
source_nllb = nllb_langs[source_lang_name] | |
target_nllb = nllb_langs[target_lang_name] | |
# NLLB Translation | |
translation_nllb = translator_nllb(text, src_lang=source_nllb, tgt_lang=target_nllb)[0]['translation_text'] | |
print(translation_nllb) | |
# Google Translation | |
translation_google = GoogleTranslator(source='auto', target=language_dict[target_lang_name]).translate(text) | |
# Cosine similarity comparison | |
embedding_original = sentence_model.encode(text, convert_to_tensor=True) | |
embedding_nllb = sentence_model.encode(translation_nllb, convert_to_tensor=True) | |
embedding_google = sentence_model.encode(translation_google, convert_to_tensor=True) | |
cosine_score_nllb = util.cos_sim(embedding_original, embedding_nllb).item() | |
cosine_score_google = util.cos_sim(embedding_original, embedding_google).item() | |
# Select more accurate translation | |
if cosine_score_nllb >= cosine_score_google: | |
print('nllb') | |
return translation_nllb | |
else: | |
print('gt') | |
return translation_google | |
def main(): | |
st.title("Multilingual Chat Application with Speech Input") | |
# Sidebar for user setup | |
st.sidebar.header("User Setup") | |
username = st.sidebar.text_input("Enter your name:") | |
language = st.sidebar.selectbox("Choose your language:", list(language_dict.keys())) | |
if not username: | |
st.warning("Please enter your name to start chatting.") | |
return | |
user_lang_code = language_dict[language] | |
if "messages" not in st.session_state: | |
st.session_state["messages"] = load_messages() | |
# Display chat history | |
st.subheader("Chat Room") | |
# chat_container = st.container() | |
# with chat_container: | |
for msg in st.session_state["messages"]: | |
# translated_text = GoogleTranslator(source='auto', target=user_lang_code).translate(msg['text']) | |
#translated_text | |
with st.chat_message(msg['name']): | |
st.write(f"{msg['name']} ({msg['lang']}): {msg['translations'][language]}") | |
# Speech input integration | |
st.subheader("Speak your message") | |
spoken_text = speech_to_text(language=user_lang_code, use_container_width=True, just_once=True, key='speech_input') | |
if spoken_text: | |
input_text = spoken_text | |
translations = {} | |
st.write(f"You said: {spoken_text}") | |
if spoken_text: | |
for lang in nllb_langs: | |
translation = translate_text_multimodel(spoken_text, language, lang) | |
translations[lang] = translation | |
new_message = {"user": username, "name": username, "lang": language, "text": input_text, "translations": translations} | |
st.session_state["messages"].append(new_message) | |
save_messages(st.session_state["messages"]) | |
st.rerun() | |
time.sleep(1) | |
st.rerun() | |
if __name__ == "__main__": | |
main() | |