import streamlit as st from deep_translator import GoogleTranslator from streamlit_mic_recorder import speech_to_text from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from sentence_transformers import SentenceTransformer, util import json import time st.set_page_config(layout="wide") # Language dictionaries language_dict = { 'English': 'en', 'Hindi': 'hi', 'Bengali': 'bn', 'Gujarati': 'gu', 'Marathi': 'mr', 'Telugu': 'te', 'Tamil': 'ta', 'Punjabi': 'pa', 'Odia': 'or', 'Nepali': 'ne', 'Malayalam': 'ml' } nllb_langs = { 'English':'eng_Latn','Hindi':'hin_Deva','Punjabi':'pan_Guru','Odia':'ory_Orya', 'Bengali':'ben_Beng','Telugu':'tel_Telu','Tamil':'tam_Taml','Nepali':'npi_Deva', 'Marathi':'mar_Deva','Malayalam':'mal_Mlym','Gujarati':'guj_Gujr' } CHAT_FILE = "chat_data.json" @st.cache_resource def load_nllb_model(): tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M") translator = pipeline('translation', model=model, tokenizer=tokenizer) return translator @st.cache_resource def load_sentence_model(): return SentenceTransformer("google/muril-base-cased") translator_nllb = load_nllb_model() sentence_model = load_sentence_model() def load_messages(): try: with open(CHAT_FILE, "r") as file: return json.load(file) except (FileNotFoundError, json.JSONDecodeError): return [] def save_messages(messages): with open(CHAT_FILE, "w") as file: json.dump(messages, file) def translate_text_multimodel(text, source_lang_name, target_lang_name): source_nllb = nllb_langs[source_lang_name] target_nllb = nllb_langs[target_lang_name] # NLLB Translation translation_nllb = translator_nllb(text, src_lang=source_nllb, tgt_lang=target_nllb)[0]['translation_text'] print(translation_nllb) # Google Translation translation_google = GoogleTranslator(source='auto', target=language_dict[target_lang_name]).translate(text) # Cosine similarity comparison embedding_original = sentence_model.encode(text, convert_to_tensor=True) embedding_nllb = sentence_model.encode(translation_nllb, convert_to_tensor=True) embedding_google = sentence_model.encode(translation_google, convert_to_tensor=True) cosine_score_nllb = util.cos_sim(embedding_original, embedding_nllb).item() cosine_score_google = util.cos_sim(embedding_original, embedding_google).item() # Select more accurate translation if cosine_score_nllb >= cosine_score_google: print('nllb') return translation_nllb else: print('gt') return translation_google def main(): st.title("Multilingual Chat Application with Speech Input") # Sidebar for user setup st.sidebar.header("User Setup") username = st.sidebar.text_input("Enter your name:") language = st.sidebar.selectbox("Choose your language:", list(language_dict.keys())) if not username: st.warning("Please enter your name to start chatting.") return user_lang_code = language_dict[language] if "messages" not in st.session_state: st.session_state["messages"] = load_messages() # Display chat history st.subheader("Chat Room") # chat_container = st.container() # with chat_container: for msg in st.session_state["messages"]: # translated_text = GoogleTranslator(source='auto', target=user_lang_code).translate(msg['text']) #translated_text with st.chat_message(msg['name']): st.write(f"{msg['name']} ({msg['lang']}): {msg['translations'][language]}") # Speech input integration st.subheader("Speak your message") spoken_text = speech_to_text(language=user_lang_code, use_container_width=True, just_once=True, key='speech_input') if spoken_text: input_text = spoken_text translations = {} st.write(f"You said: {spoken_text}") if spoken_text: for lang in nllb_langs: translation = translate_text_multimodel(spoken_text, language, lang) translations[lang] = translation new_message = {"user": username, "name": username, "lang": language, "text": input_text, "translations": translations} st.session_state["messages"].append(new_message) save_messages(st.session_state["messages"]) st.rerun() time.sleep(1) st.rerun() if __name__ == "__main__": main()