Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,28 @@
|
|
|
|
1 |
from transformers import pipeline
|
2 |
|
|
|
3 |
sentiment_pipeline = pipeline(
|
4 |
"text-classification",
|
5 |
model="hasanmustafa0503/SentimentModel",
|
6 |
tokenizer="hasanmustafa0503/SentimentModel"
|
7 |
)
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import pipeline
|
3 |
|
4 |
+
# Initialize the sentiment analysis pipeline
|
5 |
sentiment_pipeline = pipeline(
|
6 |
"text-classification",
|
7 |
model="hasanmustafa0503/SentimentModel",
|
8 |
tokenizer="hasanmustafa0503/SentimentModel"
|
9 |
)
|
10 |
|
11 |
+
# Function to classify sentiment of text
|
12 |
+
def classify_sentiment(text):
|
13 |
+
result = sentiment_pipeline(text)
|
14 |
+
return result[0]['label'], result[0]['score']
|
15 |
+
|
16 |
+
# Define Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=classify_sentiment, # Function to call
|
19 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter text here..."), # Text input box
|
20 |
+
outputs=[gr.Label(), gr.Number()], # Label for sentiment and score
|
21 |
+
title="Sentiment Analysis", # Title for the app
|
22 |
+
description="Enter some text, and this tool will predict the sentiment as POSITIVE or NEGATIVE along with the confidence score.", # Description
|
23 |
+
)
|
24 |
+
|
25 |
+
# Launch the app
|
26 |
+
iface.launch()
|
27 |
+
|
28 |
|