hasnanmr's picture
first init
40fd038
raw
history blame
7.59 kB
import os
import groqclient
import gradio as gr
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import sqlite3
import pandas as pd
from tqdm import tqdm
# Get the Groq API key from environment variables (in Hugging Face, this is stored as a secret)
api_key = os.getenv('GROQ_API_KEY')
groqclient.api_key = api_key
con = sqlite3.connect("file::memory:?cache=shared")
con.row_factory = sqlite3.Row
cur = con.cursor()
# create table if not exists
cur.execute("""
CREATE TABLE IF NOT EXISTS places (
Place_Id INTEGER PRIMARY KEY, -- SQLite auto-increments INTEGER PRIMARY KEY automatically
Place_Name TEXT NOT NULL, -- SQLite uses TEXT instead of VARCHAR
Description TEXT,
Category TEXT,
City TEXT,
Price REAL, -- SQLite uses REAL instead of DECIMAL or FLOAT
Rating REAL,
Embedding TEXT
);
""")
data = pd.read_csv('tourism_place.csv')
# check if the table is empty
cur.execute("SELECT * FROM places")
if cur.fetchone() is None:
# Store the places in the database
for i in tqdm(range(len(data))):
cur.execute("""
INSERT INTO places (Place_Name, Description, Category, City, Price, Rating)
VALUES (?, ?, ?, ?, ?, ?)
""", (data['Place_Name'][i], data['Description'][i], data['Category'][i], data['City'][i], float(data['Price'][i]), float(data['Rating'][i]))
)
# Commit the changes to the database
con.commit()
# Compute and store embeddings
def compute_and_store_embeddings():
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Select all places from the database
cur.execute("SELECT Place_Id, Place_Name, Category, Description, City FROM places")
places = cur.fetchall()
for place in places:
# Combine PlaceName, Category, Description, and City into one string
text = f"{place[1]} {place[2]} {place[3]} {place[4]}"
# Generate embedding for the combined text
embedding = model.encode(text)
# Convert embedding to a string format to store in the database
embedding_str = ','.join([str(x) for x in embedding])
# Update the place in the database with the embedding
cur.execute(
"UPDATE places SET Embedding = ? WHERE Place_Id = ?",
(embedding_str, place[0])
)
# Commit the changes to the database
con.commit()
# Run the function to compute and store embeddings
compute_and_store_embeddings()
# Load Hugging Face model for generating embeddings
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
# Normalize user query using Groq VM
def normalize_query(user_query):
try:
response = groqclient.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[{
"role": "user",
"content": f"""
Please analyze the query: \"{user_query}\", extract Place name, Category, Description, and City.
Return the response as: "Place name, Category, Description, City".
"""
}]
)
normalized_user_query = response.choices[0].message.content.split('\n')[-1].strip()
return normalized_user_query
except Exception as e:
print(f"Error normalizing query: {e}")
return ""
# Generate user embedding using Hugging Face model
def get_user_embedding(query):
try:
return model.encode(query)
except Exception as e:
print(f"Error generating embedding: {e}")
return np.zeros(512) # Assuming 384 as default embedding size
# Find similar places based on cosine similarity
def get_similar_places(user_embedding):
similarities = []
try:
res = cur.execute("SELECT * FROM places").fetchall()
for place in res:
embedding_str = place['Embedding']
embedding = np.array([float(x) for x in embedding_str.split(',')])
similarity = cosine_similarity([user_embedding], [embedding])[0][0]
similarities.append((place, similarity))
ranked_results = sorted(similarities, key=lambda x: (x[1], x[0]['Rating']), reverse=True)
return ranked_results[:5] # Return top 5 places
except Exception as e:
print(f"Error fetching similar places: {e}")
return []
# Main function to get top 5 destinations
def get_top_5_destinations(user_query):
normalized_query = normalize_query(user_query)
user_embedding = get_user_embedding(normalized_query)
similar_places = get_similar_places(user_embedding)
if not similar_places:
return "Tidak ada tempat yang ditemukan."
top_places = []
for i, (place, similarity) in enumerate(similar_places):
top_places.append({
'name': place['Place_Name'],
'city': place['City'],
'category': place['Category'],
'rating': place['Rating'],
'description': place['Description'],
'similarity': similarity
})
return top_places
# Generate response to user using Groq VM
def generate_response(user_query, top_places):
try:
# Prepare the destinations data in JSON format for the model to use directly
destinations_data = ", ".join([
f'{{"name": "{place["name"]}", "city": "{place["city"]}", "category": "{place["category"]}", "rating": {place["rating"]}, "description": "{place["description"]}"}}'
for place in top_places
])
# System prompt: Simplified and focused on returning only the recommendations
system_prompt = """
You are a tour guide assistant. Your task is to present the following tourism recommendations to the user in Bahasa Indonesia.
- For each destination, include the name, city, category, rating, and a short description.
- Do not provide any additional commentary.
- Only return the provided data in a clear and concise format.
"""
# Generate the response using the model
response = groqclient.chat.completions.create(
model="llama-3.1-70b-versatile",
messages=[
{"role": "system", "content": system_prompt}, # System prompt defines behavior
{"role": "user", "content": f"Berikut adalah rekomendasi berdasarkan data: {destinations_data}"}
]
)
# Return the response content generated by the model
return response.choices[0].message.content
except Exception as e:
print(f"Error generating response: {e}")
return "Maaf, terjadi kesalahan dalam menghasilkan rekomendasi."
# Gradio Interface - User Input and Output
def chatbot(user_query):
# Step 1: Get the top 5 destinations
top_places = get_top_5_destinations(user_query)
if isinstance(top_places, str): # Error case, e.g. "No places found"
return top_places
# Step 2: Generate the chatbot's response
response = generate_response(user_query, top_places)
return response
# Define Gradio Interface
iface = gr.Interface(
fn=chatbot,
inputs="text",
outputs="text",
title="Tourism Recommendation Chatbot",
description="Masukkan pertanyaan wisata Anda dan dapatkan rekomendasi tempat terbaik!"
)
# Launch the Gradio App
if __name__ == "__main__":
iface.launch()