hasnanmr commited on
Commit
624c738
·
1 Parent(s): 7c75f13

add new model state

Browse files
Files changed (2) hide show
  1. app.py +4 -6
  2. best_vit10.pth +3 -0
app.py CHANGED
@@ -15,23 +15,21 @@ class ViT(nn.Module):
15
  self.base_model = base_model
16
  self.dropout = nn.Dropout(p=0.2)
17
  self.fc = nn.Linear(base_model.config.hidden_size, 512)
18
- self.dropout2 = nn.Dropout(p=0.2)
19
  self.l2_norm = nn.functional.normalize
20
 
21
  def forward(self, x):
22
  x = self.base_model(x).pooler_output
23
  x = self.dropout(x)
24
  x = self.fc(x)
25
- x = self.dropout2(x)
26
  x = self.l2_norm(x, p=2, dim=1) # Apply L2 normalization
27
  return x
28
 
29
  # Load the pre-trained ViT model and processor
30
  model_name = "google/vit-base-patch16-224"
31
- processor = ViTImageProcessor.from_pretrained(model_name)
32
- base_model = ViTModel.from_pretrained(model_name)
33
  model = ViT(base_model)
34
- model_path = r'best_vit11.pth'
35
  model.load_state_dict(torch.load(model_path))
36
  model.eval().to('cuda' if torch.cuda.is_available() else 'cpu')
37
 
@@ -85,7 +83,7 @@ def process_images(image1, image2):
85
  embedding2 = embedding2.flatten()
86
 
87
  euclidean_dist = euclidean_distance(embedding1, embedding2)
88
- is_match = euclidean_dist < 0.3
89
 
90
  # Calculate confidence
91
  confidence = max(0.0, 1.0 - euclidean_dist / 1.0) # Ensure confidence is between 0 and 1
 
15
  self.base_model = base_model
16
  self.dropout = nn.Dropout(p=0.2)
17
  self.fc = nn.Linear(base_model.config.hidden_size, 512)
 
18
  self.l2_norm = nn.functional.normalize
19
 
20
  def forward(self, x):
21
  x = self.base_model(x).pooler_output
22
  x = self.dropout(x)
23
  x = self.fc(x)
 
24
  x = self.l2_norm(x, p=2, dim=1) # Apply L2 normalization
25
  return x
26
 
27
  # Load the pre-trained ViT model and processor
28
  model_name = "google/vit-base-patch16-224"
29
+ processor = ViTImageProcessor.from_pretrained(model_name)
30
+ base_model = ViTModel.from_pretrained("WinKawaks/vit-small-patch16-224")
31
  model = ViT(base_model)
32
+ model_path = r'best_vit10.pth'
33
  model.load_state_dict(torch.load(model_path))
34
  model.eval().to('cuda' if torch.cuda.is_available() else 'cpu')
35
 
 
83
  embedding2 = embedding2.flatten()
84
 
85
  euclidean_dist = euclidean_distance(embedding1, embedding2)
86
+ is_match = euclidean_dist < 0.2
87
 
88
  # Calculate confidence
89
  confidence = max(0.0, 1.0 - euclidean_dist / 1.0) # Ensure confidence is between 0 and 1
best_vit10.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6bd60779276ccef3018360dd9536fe43f3439511a2ce499a33b871569781aed
3
+ size 88127816