Spaces:
Sleeping
Sleeping
change the similarity algorithm
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
import torchvision.transforms as transforms
|
4 |
-
import cv2
|
5 |
import numpy as np
|
6 |
import gradio as gr
|
7 |
from PIL import Image
|
@@ -36,13 +35,14 @@ model.to(device)
|
|
36 |
# Initialize MTCNN for face detection
|
37 |
mtcnn = MTCNN(keep_all=True, device=device)
|
38 |
|
39 |
-
# Define the transformation
|
40 |
-
|
41 |
transforms.Resize((224, 224)),
|
42 |
-
transforms.ToTensor()
|
|
|
43 |
])
|
44 |
|
45 |
-
def compare_faces(embedding1, embedding2, threshold=
|
46 |
dist = np.linalg.norm(embedding1.cpu().numpy() - embedding2.cpu().numpy())
|
47 |
return dist, dist < threshold
|
48 |
|
@@ -76,8 +76,8 @@ def process_images(image1, image2):
|
|
76 |
if face1 is None or face2 is None:
|
77 |
return None, "Face not detected in one or both images."
|
78 |
|
79 |
-
face1 =
|
80 |
-
face2 =
|
81 |
|
82 |
with torch.no_grad():
|
83 |
embedding1 = model(face1)
|
@@ -86,7 +86,7 @@ def process_images(image1, image2):
|
|
86 |
embedding1 = l2_normalize(embedding1)
|
87 |
embedding2 = l2_normalize(embedding2)
|
88 |
|
89 |
-
distance, is_match = compare_faces(embedding1, embedding2)
|
90 |
|
91 |
end_time = time.time()
|
92 |
inference_time = end_time - start_time
|
|
|
1 |
import torch
|
2 |
from torch import nn
|
3 |
import torchvision.transforms as transforms
|
|
|
4 |
import numpy as np
|
5 |
import gradio as gr
|
6 |
from PIL import Image
|
|
|
35 |
# Initialize MTCNN for face detection
|
36 |
mtcnn = MTCNN(keep_all=True, device=device)
|
37 |
|
38 |
+
# Define the transformation with normalization
|
39 |
+
val_test_transform_vit = transforms.Compose([
|
40 |
transforms.Resize((224, 224)),
|
41 |
+
transforms.ToTensor(),
|
42 |
+
transforms.Normalize(mean=processor.image_mean, std=processor.image_std)
|
43 |
])
|
44 |
|
45 |
+
def compare_faces(embedding1, embedding2, threshold=0.6): # Adjusted threshold
|
46 |
dist = np.linalg.norm(embedding1.cpu().numpy() - embedding2.cpu().numpy())
|
47 |
return dist, dist < threshold
|
48 |
|
|
|
76 |
if face1 is None or face2 is None:
|
77 |
return None, "Face not detected in one or both images."
|
78 |
|
79 |
+
face1 = val_test_transform_vit(face1).unsqueeze(0).to(device)
|
80 |
+
face2 = val_test_transform_vit(face2).unsqueeze(0).to(device)
|
81 |
|
82 |
with torch.no_grad():
|
83 |
embedding1 = model(face1)
|
|
|
86 |
embedding1 = l2_normalize(embedding1)
|
87 |
embedding2 = l2_normalize(embedding2)
|
88 |
|
89 |
+
distance, is_match = compare_faces(embedding1, embedding2, threshold=0.88)
|
90 |
|
91 |
end_time = time.time()
|
92 |
inference_time = end_time - start_time
|