hasnanmr commited on
Commit
d5e4995
1 Parent(s): 9d91d02

change model recognition

Browse files
Files changed (3) hide show
  1. .gitattributes +1 -0
  2. app.py +5 -5
  3. faceNet_update_transformation.pth +3 -0
.gitattributes CHANGED
@@ -35,3 +35,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  faceViT4.pth filter=lfs diff=lfs merge=lfs -text
37
  faceNet6.pth filter=lfs diff=lfs merge=lfs -text
 
 
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  faceViT4.pth filter=lfs diff=lfs merge=lfs -text
37
  faceNet6.pth filter=lfs diff=lfs merge=lfs -text
38
+ faceNet_update_transformation.pth filter=lfs diff=lfs merge=lfs -text
app.py CHANGED
@@ -11,7 +11,7 @@ mtcnn = MTCNN(keep_all=True, device='cuda' if torch.cuda.is_available() else 'cp
11
 
12
  # Load the pre-trained FaceNet model
13
  facenet = InceptionResnetV1(pretrained='vggface2').eval().to('cuda' if torch.cuda.is_available() else 'cpu')
14
- model_path = r'faceNet6.pth'
15
  model_state_dict = torch.load(model_path)
16
  facenet.load_state_dict(model_state_dict)
17
  facenet.eval() # Set the model to evaluation mode
@@ -72,10 +72,10 @@ def process_images(image1, image2):
72
  embedding1 = l2_normalize(embedding1)
73
  embedding2 = l2_normalize(embedding2)
74
 
75
- distance, is_match = compare_faces(embedding1, embedding2, threshold=0.2)
76
 
77
- # Calculate confidence
78
- confidence = max(0.0, 1.0 - distance / 1.0) # Ensure confidence is between 0 and 1
79
 
80
  end_time = time.time()
81
  inference_time = end_time - start_time
@@ -84,7 +84,7 @@ def process_images(image1, image2):
84
  image1_with_box = draw_bounding_box(image1, box1)
85
  image2_with_box = draw_bounding_box(image2, box2)
86
 
87
- result = f"Distance: {distance:.2f}\nMatch: {is_match}\nConfidence: {confidence:.2f}\nInference time: {inference_time:.2f} seconds"
88
 
89
  return [image1_with_box, image2_with_box], result
90
 
 
11
 
12
  # Load the pre-trained FaceNet model
13
  facenet = InceptionResnetV1(pretrained='vggface2').eval().to('cuda' if torch.cuda.is_available() else 'cpu')
14
+ model_path = r'faceNet_update_transformation.pth'
15
  model_state_dict = torch.load(model_path)
16
  facenet.load_state_dict(model_state_dict)
17
  facenet.eval() # Set the model to evaluation mode
 
72
  embedding1 = l2_normalize(embedding1)
73
  embedding2 = l2_normalize(embedding2)
74
 
75
+ distance, is_match = compare_faces(embedding1, embedding2, threshold=0.25)
76
 
77
+ # # Calculate confidence
78
+ # confidence = max(0.0, 1.0 - distance / 1.0) # Ensure confidence is between 0 and 1
79
 
80
  end_time = time.time()
81
  inference_time = end_time - start_time
 
84
  image1_with_box = draw_bounding_box(image1, box1)
85
  image2_with_box = draw_bounding_box(image2, box2)
86
 
87
+ result = f"Distance: {distance:.2f}\nMatch: {is_match}\nInference time: {inference_time:.2f} seconds"
88
 
89
  return [image1_with_box, image2_with_box], result
90
 
faceNet_update_transformation.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:86b4b567798373e423655892a9a377038d2cfae87bbb073d3d9ae83b93a94081
3
+ size 112028666