Spaces:
Sleeping
Sleeping
add another model state of vit
Browse files- app_facevit.py +121 -0
app_facevit.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image, ImageDraw
|
5 |
+
from torchvision import transforms
|
6 |
+
from transformers import ViTImageProcessor, ViTModel
|
7 |
+
from facenet_pytorch import MTCNN
|
8 |
+
import gradio as gr
|
9 |
+
import time
|
10 |
+
|
11 |
+
# Define the Vision Transformer (ViT) architecture
|
12 |
+
class ViT(nn.Module):
|
13 |
+
def __init__(self, base_model):
|
14 |
+
super(ViT, self).__init__()
|
15 |
+
self.base_model = base_model
|
16 |
+
self.dropout = nn.Dropout(p=0.2)
|
17 |
+
self.fc = nn.Linear(base_model.config.hidden_size, 512)
|
18 |
+
self.dropout2 = nn.Dropout(p=0.2)
|
19 |
+
self.l2_norm = nn.functional.normalize
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.base_model(x).pooler_output
|
23 |
+
x = self.dropout(x)
|
24 |
+
x = self.fc(x)
|
25 |
+
x = self.dropout2(x)
|
26 |
+
x = self.l2_norm(x, p=2, dim=1) # Apply L2 normalization
|
27 |
+
return x
|
28 |
+
|
29 |
+
# Load the pre-trained ViT model and processor
|
30 |
+
model_name = "google/vit-base-patch16-224"
|
31 |
+
processor = ViTImageProcessor.from_pretrained(model_name)
|
32 |
+
base_model = ViTModel.from_pretrained(model_name)
|
33 |
+
model = ViT(base_model)
|
34 |
+
model_path = r'best_vit11.pth'
|
35 |
+
model.load_state_dict(torch.load(model_path))
|
36 |
+
model.eval().to('cuda' if torch.cuda.is_available() else 'cpu')
|
37 |
+
|
38 |
+
# Initialize MTCNN for face detection
|
39 |
+
mtcnn = MTCNN(keep_all=True, min_face_size=20, device='cuda' if torch.cuda.is_available() else 'cpu')
|
40 |
+
|
41 |
+
def align_face(frame):
|
42 |
+
# Convert the frame to a PIL image if it's a numpy array
|
43 |
+
if isinstance(frame, np.ndarray):
|
44 |
+
frame = Image.fromarray(frame)
|
45 |
+
boxes, _ = mtcnn.detect(frame)
|
46 |
+
if boxes is not None and len(boxes) > 0:
|
47 |
+
faces = mtcnn(frame)
|
48 |
+
if faces is not None and len(faces) > 0:
|
49 |
+
face = faces[0]
|
50 |
+
# Convert the face tensor to PIL Image
|
51 |
+
face = transforms.ToPILImage()(face)
|
52 |
+
return face, boxes[0]
|
53 |
+
return None, None
|
54 |
+
|
55 |
+
def draw_bounding_box(image, box):
|
56 |
+
draw = ImageDraw.Draw(image)
|
57 |
+
draw.rectangle(box.tolist(), outline="red", width=3)
|
58 |
+
return image
|
59 |
+
|
60 |
+
def euclidean_distance(embedding1, embedding2):
|
61 |
+
return np.linalg.norm(embedding1 - embedding2)
|
62 |
+
|
63 |
+
def cosine_similarity(embedding1, embedding2):
|
64 |
+
return np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
65 |
+
|
66 |
+
def process_images(image1, image2):
|
67 |
+
start_time = time.time()
|
68 |
+
|
69 |
+
frame1 = np.array(image1)
|
70 |
+
frame2 = np.array(image2)
|
71 |
+
|
72 |
+
face1, box1 = align_face(frame1)
|
73 |
+
face2, box2 = align_face(frame2)
|
74 |
+
|
75 |
+
if face1 is None or face2 is None:
|
76 |
+
return None, "Face not detected in one or both images."
|
77 |
+
|
78 |
+
# Use processor to preprocess the images
|
79 |
+
face1 = processor(images=face1, return_tensors="pt").pixel_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
80 |
+
face2 = processor(images=face2, return_tensors="pt").pixel_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
embedding1 = model(face1).cpu().numpy()
|
84 |
+
embedding2 = model(face2).cpu().numpy()
|
85 |
+
|
86 |
+
# Flatten the embeddings if necessary (ensuring they are 1D)
|
87 |
+
embedding1 = embedding1.flatten()
|
88 |
+
embedding2 = embedding2.flatten()
|
89 |
+
|
90 |
+
euclidean_dist = euclidean_distance(embedding1, embedding2)
|
91 |
+
cosine_sim = cosine_similarity(embedding1, embedding2)
|
92 |
+
is_match = euclidean_dist < 0.2
|
93 |
+
|
94 |
+
# Calculate confidence
|
95 |
+
confidence = max(0.0, 1.0 - euclidean_dist / 1.0) # Ensure confidence is between 0 and 1
|
96 |
+
print(f'confidence={confidence}')
|
97 |
+
end_time = time.time()
|
98 |
+
inference_time = end_time - start_time
|
99 |
+
|
100 |
+
# Draw bounding boxes on the original images
|
101 |
+
image1_with_box = draw_bounding_box(image1, box1)
|
102 |
+
image2_with_box = draw_bounding_box(image2, box2)
|
103 |
+
|
104 |
+
result = f"Euclidean Distance: {euclidean_dist:.2f}\n"
|
105 |
+
# result += f"Cosine Similarity: {cosine_sim:.2f}\n"
|
106 |
+
result += f"Match: {is_match}\n"
|
107 |
+
result += f"Inference time: {inference_time:.2f} seconds"
|
108 |
+
|
109 |
+
return [image1_with_box, image2_with_box], result
|
110 |
+
|
111 |
+
# Create the Gradio interface
|
112 |
+
iface = gr.Interface(
|
113 |
+
fn=process_images,
|
114 |
+
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
115 |
+
outputs=[gr.Gallery(), gr.Textbox()],
|
116 |
+
title="Face Verification with Vision Transformer",
|
117 |
+
description="Upload two images and the model will verify if the faces in both images are of the same person."
|
118 |
+
)
|
119 |
+
|
120 |
+
# Launch the interface
|
121 |
+
iface.launch(share=True, debug=True)
|