Spaces:
Sleeping
Sleeping
test new model
Browse files- app.py +155 -33
- best_vit11.pth +3 -0
app.py
CHANGED
@@ -1,31 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
-
import
|
3 |
import numpy as np
|
4 |
-
import gradio as gr
|
5 |
from PIL import Image, ImageDraw
|
6 |
-
from
|
|
|
|
|
|
|
7 |
import time
|
8 |
|
9 |
-
#
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
18 |
|
19 |
-
#
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
return dist, dist < threshold
|
29 |
|
30 |
def align_face(frame):
|
31 |
# Convert the frame to a PIL image if it's a numpy array
|
@@ -46,9 +159,11 @@ def draw_bounding_box(image, box):
|
|
46 |
draw.rectangle(box.tolist(), outline="red", width=3)
|
47 |
return image
|
48 |
|
49 |
-
def
|
50 |
-
|
51 |
-
|
|
|
|
|
52 |
|
53 |
def process_images(image1, image2):
|
54 |
start_time = time.time()
|
@@ -62,20 +177,24 @@ def process_images(image1, image2):
|
|
62 |
if face1 is None or face2 is None:
|
63 |
return None, "Face not detected in one or both images."
|
64 |
|
65 |
-
|
66 |
-
|
|
|
67 |
|
68 |
with torch.no_grad():
|
69 |
-
embedding1 =
|
70 |
-
embedding2 =
|
71 |
|
72 |
-
|
73 |
-
|
|
|
74 |
|
75 |
-
|
|
|
|
|
76 |
|
77 |
# Calculate confidence
|
78 |
-
confidence = max(0.0, 1.0 -
|
79 |
print(f'confidence={confidence}')
|
80 |
end_time = time.time()
|
81 |
inference_time = end_time - start_time
|
@@ -84,7 +203,10 @@ def process_images(image1, image2):
|
|
84 |
image1_with_box = draw_bounding_box(image1, box1)
|
85 |
image2_with_box = draw_bounding_box(image2, box2)
|
86 |
|
87 |
-
result = f"Distance: {
|
|
|
|
|
|
|
88 |
|
89 |
return [image1_with_box, image2_with_box], result
|
90 |
|
@@ -93,7 +215,7 @@ iface = gr.Interface(
|
|
93 |
fn=process_images,
|
94 |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
95 |
outputs=[gr.Gallery(), gr.Textbox()],
|
96 |
-
title="Face Verification with
|
97 |
description="Upload two images and the model will verify if the faces in both images are of the same person."
|
98 |
)
|
99 |
|
|
|
1 |
+
# import torch
|
2 |
+
# import torchvision.transforms as transforms
|
3 |
+
# import numpy as np
|
4 |
+
# import gradio as gr
|
5 |
+
# from PIL import Image, ImageDraw
|
6 |
+
# from facenet_pytorch import MTCNN, InceptionResnetV1
|
7 |
+
# import time
|
8 |
+
|
9 |
+
# # Initialize MTCNN for face detection with smaller face size detection
|
10 |
+
# mtcnn = MTCNN(keep_all=True, device='cuda' if torch.cuda.is_available() else 'cpu', min_face_size=20)
|
11 |
+
|
12 |
+
# # Load the pre-trained FaceNet model
|
13 |
+
# facenet = InceptionResnetV1(pretrained='vggface2').eval().to('cuda' if torch.cuda.is_available() else 'cpu')
|
14 |
+
# model_path = r'faceNet_update_transformation.pth'
|
15 |
+
# model_state_dict = torch.load(model_path)
|
16 |
+
# facenet.load_state_dict(model_state_dict)
|
17 |
+
# facenet.eval() # Set the model to evaluation mode
|
18 |
+
|
19 |
+
# # Define the transformation with normalization
|
20 |
+
# val_test_transform = transforms.Compose([
|
21 |
+
# transforms.Resize((160, 160)), # FaceNet expects 160x160 input
|
22 |
+
# transforms.ToTensor(),
|
23 |
+
# transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
24 |
+
# ])
|
25 |
+
|
26 |
+
# def compare_faces(embedding1, embedding2, threshold=0.2): # Adjusted threshold
|
27 |
+
# dist = np.linalg.norm(embedding1 - embedding2)
|
28 |
+
# return dist, dist < threshold
|
29 |
+
|
30 |
+
# def align_face(frame):
|
31 |
+
# # Convert the frame to a PIL image if it's a numpy array
|
32 |
+
# if isinstance(frame, np.ndarray):
|
33 |
+
# frame = Image.fromarray(frame)
|
34 |
+
# boxes, _ = mtcnn.detect(frame)
|
35 |
+
# if boxes is not None and len(boxes) > 0:
|
36 |
+
# faces = mtcnn(frame)
|
37 |
+
# if faces is not None and len(faces) > 0:
|
38 |
+
# face = faces[0]
|
39 |
+
# # Convert the face tensor to PIL Image
|
40 |
+
# face = transforms.ToPILImage()(face)
|
41 |
+
# return face, boxes[0]
|
42 |
+
# return None, None
|
43 |
+
|
44 |
+
# def draw_bounding_box(image, box):
|
45 |
+
# draw = ImageDraw.Draw(image)
|
46 |
+
# draw.rectangle(box.tolist(), outline="red", width=3)
|
47 |
+
# return image
|
48 |
+
|
49 |
+
# def l2_normalize(tensor):
|
50 |
+
# norm = np.linalg.norm(tensor, ord=2, axis=1, keepdims=True)
|
51 |
+
# return tensor / norm
|
52 |
+
|
53 |
+
# def process_images(image1, image2):
|
54 |
+
# start_time = time.time()
|
55 |
+
|
56 |
+
# frame1 = np.array(image1)
|
57 |
+
# frame2 = np.array(image2)
|
58 |
+
|
59 |
+
# face1, box1 = align_face(frame1)
|
60 |
+
# face2, box2 = align_face(frame2)
|
61 |
+
|
62 |
+
# if face1 is None or face2 is None:
|
63 |
+
# return None, "Face not detected in one or both images."
|
64 |
+
|
65 |
+
# face1 = val_test_transform(face1).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
|
66 |
+
# face2 = val_test_transform(face2).unsqueeze(0).to('cuda' if torch.cuda.is_available() else 'cpu')
|
67 |
+
|
68 |
+
# with torch.no_grad():
|
69 |
+
# embedding1 = facenet(face1).cpu().numpy()
|
70 |
+
# embedding2 = facenet(face2).cpu().numpy()
|
71 |
+
|
72 |
+
# embedding1 = l2_normalize(embedding1)
|
73 |
+
# embedding2 = l2_normalize(embedding2)
|
74 |
+
|
75 |
+
# distance, is_match = compare_faces(embedding1, embedding2, threshold=0.2)
|
76 |
+
|
77 |
+
# # Calculate confidence
|
78 |
+
# confidence = max(0.0, 1.0 - distance / 1.0) # Ensure confidence is between 0 and 1
|
79 |
+
# print(f'confidence={confidence}')
|
80 |
+
# end_time = time.time()
|
81 |
+
# inference_time = end_time - start_time
|
82 |
+
|
83 |
+
# # Draw bounding boxes on the original images
|
84 |
+
# image1_with_box = draw_bounding_box(image1, box1)
|
85 |
+
# image2_with_box = draw_bounding_box(image2, box2)
|
86 |
+
|
87 |
+
# result = f"Distance: {distance:.2f}\nMatch: {is_match}\nInference time: {inference_time:.2f} seconds"
|
88 |
+
|
89 |
+
# return [image1_with_box, image2_with_box], result
|
90 |
+
|
91 |
+
# # Create the Gradio interface
|
92 |
+
# iface = gr.Interface(
|
93 |
+
# fn=process_images,
|
94 |
+
# inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
95 |
+
# outputs=[gr.Gallery(), gr.Textbox()],
|
96 |
+
# title="Face Verification with FaceNet",
|
97 |
+
# description="Upload two images and the model will verify if the faces in both images are of the same person."
|
98 |
+
# )
|
99 |
+
|
100 |
+
# # Launch the interface
|
101 |
+
# iface.launch(share=True, debug=True)
|
102 |
+
|
103 |
import torch
|
104 |
+
import torch.nn as nn
|
105 |
import numpy as np
|
|
|
106 |
from PIL import Image, ImageDraw
|
107 |
+
from torchvision import transforms
|
108 |
+
from transformers import ViTImageProcessor, ViTModel
|
109 |
+
from facenet_pytorch import MTCNN
|
110 |
+
import gradio as gr
|
111 |
import time
|
112 |
|
113 |
+
# Define the Vision Transformer (ViT) architecture
|
114 |
+
class ViT(nn.Module):
|
115 |
+
def __init__(self, base_model):
|
116 |
+
super(ViT, self).__init__()
|
117 |
+
self.base_model = base_model
|
118 |
+
self.dropout = nn.Dropout(p=0.2)
|
119 |
+
self.fc = nn.Linear(base_model.config.hidden_size, 512)
|
120 |
+
self.dropout2 = nn.Dropout(p=0.2)
|
121 |
+
self.l2_norm = nn.functional.normalize
|
122 |
|
123 |
+
def forward(self, x):
|
124 |
+
x = self.base_model(x).pooler_output
|
125 |
+
x = self.dropout(x)
|
126 |
+
x = self.fc(x)
|
127 |
+
x = self.dropout2(x)
|
128 |
+
x = self.l2_norm(x, p=2, dim=1) # Apply L2 normalization
|
129 |
+
return x
|
130 |
|
131 |
+
# Load the pre-trained ViT model and processor
|
132 |
+
model_name = "google/vit-base-patch16-224"
|
133 |
+
processor = ViTImageProcessor.from_pretrained(model_name)
|
134 |
+
base_model = ViTModel.from_pretrained(model_name)
|
135 |
+
model = ViT(base_model)
|
136 |
+
model_path = r'best_vit11.pth'
|
137 |
+
model.load_state_dict(torch.load(model_path))
|
138 |
+
model.eval().to('cuda' if torch.cuda.is_available() else 'cpu')
|
139 |
|
140 |
+
# Initialize MTCNN for face detection
|
141 |
+
mtcnn = MTCNN(keep_all=True, min_face_size=20, device='cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
142 |
|
143 |
def align_face(frame):
|
144 |
# Convert the frame to a PIL image if it's a numpy array
|
|
|
159 |
draw.rectangle(box.tolist(), outline="red", width=3)
|
160 |
return image
|
161 |
|
162 |
+
def euclidean_distance(embedding1, embedding2):
|
163 |
+
return np.linalg.norm(embedding1 - embedding2)
|
164 |
+
|
165 |
+
def cosine_similarity(embedding1, embedding2):
|
166 |
+
return np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
|
167 |
|
168 |
def process_images(image1, image2):
|
169 |
start_time = time.time()
|
|
|
177 |
if face1 is None or face2 is None:
|
178 |
return None, "Face not detected in one or both images."
|
179 |
|
180 |
+
# Use processor to preprocess the images
|
181 |
+
face1 = processor(images=face1, return_tensors="pt").pixel_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
182 |
+
face2 = processor(images=face2, return_tensors="pt").pixel_values.to('cuda' if torch.cuda.is_available() else 'cpu')
|
183 |
|
184 |
with torch.no_grad():
|
185 |
+
embedding1 = model(face1).cpu().numpy()
|
186 |
+
embedding2 = model(face2).cpu().numpy()
|
187 |
|
188 |
+
# Flatten the embeddings if necessary (ensuring they are 1D)
|
189 |
+
embedding1 = embedding1.flatten()
|
190 |
+
embedding2 = embedding2.flatten()
|
191 |
|
192 |
+
euclidean_dist = euclidean_distance(embedding1, embedding2)
|
193 |
+
cosine_sim = cosine_similarity(embedding1, embedding2)
|
194 |
+
is_match = euclidean_dist < 0.2
|
195 |
|
196 |
# Calculate confidence
|
197 |
+
confidence = max(0.0, 1.0 - euclidean_dist / 1.0) # Ensure confidence is between 0 and 1
|
198 |
print(f'confidence={confidence}')
|
199 |
end_time = time.time()
|
200 |
inference_time = end_time - start_time
|
|
|
203 |
image1_with_box = draw_bounding_box(image1, box1)
|
204 |
image2_with_box = draw_bounding_box(image2, box2)
|
205 |
|
206 |
+
result = f"Euclidean Distance: {euclidean_dist:.2f}\n"
|
207 |
+
# result += f"Cosine Similarity: {cosine_sim:.2f}\n"
|
208 |
+
result += f"Match: {is_match}\n"
|
209 |
+
result += f"Inference time: {inference_time:.2f} seconds"
|
210 |
|
211 |
return [image1_with_box, image2_with_box], result
|
212 |
|
|
|
215 |
fn=process_images,
|
216 |
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
217 |
outputs=[gr.Gallery(), gr.Textbox()],
|
218 |
+
title="Face Verification with Vision Transformer",
|
219 |
description="Upload two images and the model will verify if the faces in both images are of the same person."
|
220 |
)
|
221 |
|
best_vit11.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7d41bca403110bf291cf0b40749f486072de2bb701c7749eafa4fac9eb04860
|
3 |
+
size 347217224
|