Spaces:
Sleeping
Sleeping
update model state
Browse files- .gitattributes +1 -0
- app.py +3 -3
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
faceViT4.pth filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
@@ -24,7 +24,7 @@ model_name = "google/vit-base-patch16-224"
|
|
24 |
processor = ViTImageProcessor.from_pretrained(model_name)
|
25 |
base_model = ViTModel.from_pretrained("WinKawaks/vit-small-patch16-224")
|
26 |
model = ViT(base_model)
|
27 |
-
model.load_state_dict(torch.load('
|
28 |
|
29 |
# Set the model to evaluation mode
|
30 |
model.eval()
|
@@ -34,7 +34,7 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
34 |
model.to(device)
|
35 |
|
36 |
# Initialize MTCNN for face detection
|
37 |
-
mtcnn = MTCNN(keep_all=True,
|
38 |
|
39 |
# Define the transformation
|
40 |
transform = transforms.Compose([
|
@@ -43,7 +43,7 @@ transform = transforms.Compose([
|
|
43 |
])
|
44 |
|
45 |
def cosine_similarity(embedding1, embedding2):
|
46 |
-
similarity = torch.nn.functional.cosine_similarity(embedding1.
|
47 |
return similarity.item()
|
48 |
|
49 |
def align_face(frame):
|
|
|
24 |
processor = ViTImageProcessor.from_pretrained(model_name)
|
25 |
base_model = ViTModel.from_pretrained("WinKawaks/vit-small-patch16-224")
|
26 |
model = ViT(base_model)
|
27 |
+
model.load_state_dict(torch.load('faceViT4.pth'))
|
28 |
|
29 |
# Set the model to evaluation mode
|
30 |
model.eval()
|
|
|
34 |
model.to(device)
|
35 |
|
36 |
# Initialize MTCNN for face detection
|
37 |
+
mtcnn = MTCNN(keep_all=True, device=device)
|
38 |
|
39 |
# Define the transformation
|
40 |
transform = transforms.Compose([
|
|
|
43 |
])
|
44 |
|
45 |
def cosine_similarity(embedding1, embedding2):
|
46 |
+
similarity = torch.nn.functional.cosine_similarity(embedding1.unsqueeze(0), embedding2.unsqueeze(0))
|
47 |
return similarity.item()
|
48 |
|
49 |
def align_face(frame):
|