Spaces:
Sleeping
Sleeping
import streamlit as st | |
from PIL import Image | |
import torch | |
import torch.nn as nn | |
from torchvision import models, transforms | |
from torch.utils.data import DataLoader | |
from torchvision.datasets import ImageFolder | |
#define the model architecture | |
model_resnet = models.resnet18(weights='IMAGENET1K_V1') | |
for param in model_resnet.parameters(): | |
param.requires_grad = False | |
# Parameters of newly constructed modules have requires_grad=True by default | |
num_ftrs = model_resnet.fc.in_features | |
model_resnet.fc = nn.Linear(num_ftrs, 15) #mengganti jumlah classifier sesuai output kelas | |
# Load the model | |
model = model_resnet | |
state_dict = torch.load('transfer_learning_resnet_15class.pth', map_location=torch.device('cpu')) | |
model.load_state_dict(state_dict) | |
model.eval() | |
# Define the same transforms that were used during the model training | |
transform = transforms.Compose([ | |
transforms.Resize((224, 224)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
classes = ('Bean', 'Bitter_Gourd', 'Bottle_Gourd', 'Brinjal', 'Broccoli', 'Cabbage', 'Capsicum', 'Carrot', 'Cauliflower', 'Cucumber', 'Papaya', 'Potato', 'Pumpkin', 'Radish', 'Tomato') | |
def predict(image): | |
input_tensor = transform(image) | |
input_batch = input_tensor.unsqueeze(0) | |
with torch.no_grad(): | |
output = model(input_batch) | |
probabilities = torch.nn.functional.softmax(output[0], dim=0) | |
max_value, predicted_class = torch.max(probabilities, 0) | |
return classes[predicted_class.item()], max_value.item() * 100 | |
st.title('Vegetable Classification for learning') | |
st.write('you can upload your image of veggies below') | |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
image = Image.open(uploaded_file).convert('RGB') | |
st.image(image, caption='Uploaded Image') | |
label, confidence = predict(image) | |
st.write(f'Predicted label: {label}, confidence: {confidence:.2f}%') |