hasnanmr commited on
Commit
1976206
·
1 Parent(s): 65aa73c

add model and requirements

Browse files
Files changed (3) hide show
  1. app.py +53 -0
  2. requirements.txt +11 -0
  3. transfer_learning-vgg16.ipynb +0 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PIL import Image
3
+ import torch
4
+ import torch.nn as nn
5
+ from torchvision import models, transforms
6
+ from torch.utils.data import DataLoader
7
+ from torchvision.datasets import ImageFolder
8
+
9
+ vgg16 = models.vgg16(pretrained=True)
10
+
11
+ # Freeze the convolutional base to prevent updating weights during training
12
+ for param in vgg16.features.parameters():
13
+ param.requires_grad = False
14
+
15
+ num_features = vgg16.classifier[6].in_features
16
+ num_classes = 3
17
+ vgg16.classifier[6] = torch.nn.Linear(num_features, num_classes)
18
+
19
+ # Load the model
20
+ model = vgg16
21
+ state_dict = torch.load('vgg16_transfer_learning.pth')
22
+ model.load_state_dict(state_dict)
23
+ model.eval()
24
+
25
+ # Define the same transforms that were used during the model training
26
+ transform = transforms.Compose([
27
+ transforms.Resize((224, 224)),
28
+ transforms.ToTensor(),
29
+ transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225))
30
+ ])
31
+
32
+ classes = ('broccoli', 'cabbage', 'cauliflower')
33
+
34
+ def predict(image):
35
+ input_tensor = transform(image)
36
+ input_batch = input_tensor.unsqueeze(0)
37
+
38
+ with torch.no_grad():
39
+ output = model(input_batch)
40
+
41
+ probabilities = torch.nn.functional.softmax(output[0], dim=0)
42
+ max_value, predicted_class = torch.max(probabilities, 0)
43
+ return classes[predicted_class.item()], max_value.item() * 100
44
+
45
+ st.title('Vegetable Classification')
46
+ st.write('you can upload your image of veggies below')
47
+
48
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
49
+ if uploaded_file is not None:
50
+ image = Image.open(uploaded_file).convert('RGB')
51
+ st.image(image, caption='Uploaded Image')
52
+ label, confidence = predict(image)
53
+ st.write(f'Predicted label: {label}, confidence: {confidence:.2f}%')
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torch==2.2.1
2
+ torchvision==0.17.1
3
+ torchaudio==2.2.1
4
+ torchsummary==1.5.1
5
+ torcheval==0.0.7
6
+ ipykernel==6.29.3
7
+ ipython==8.22.2
8
+ scikit-learn
9
+ streamlit==1.32.2
10
+ toml==0.10.2
11
+ pillow==10.2.0
transfer_learning-vgg16.ipynb ADDED
The diff for this file is too large to render. See raw diff