import streamlit as st from PIL import Image import torch import torch.nn as nn from torchvision import models, transforms from torch.utils.data import DataLoader from torchvision.datasets import ImageFolder #define the model architecture model_resnet = models.resnet18(weights='IMAGENET1K_V1') for param in model_resnet.parameters(): param.requires_grad = False # Parameters of newly constructed modules have requires_grad=True by default num_ftrs = model_resnet.fc.in_features model_resnet.fc = nn.Linear(num_ftrs, 15) #mengganti jumlah classifier sesuai output kelas # Load the model model = model_resnet state_dict = torch.load('transfer_learning_resnet_15class.pth', map_location=torch.device('cpu')) model.load_state_dict(state_dict) model.eval() # Define the same transforms that were used during the model training transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) classes = ('Bean', 'Bitter_Gourd', 'Bottle_Gourd', 'Brinjal', 'Broccoli', 'Cabbage', 'Capsicum', 'Carrot', 'Cauliflower', 'Cucumber', 'Papaya', 'Potato', 'Pumpkin', 'Radish', 'Tomato') def predict(image): input_tensor = transform(image) input_batch = input_tensor.unsqueeze(0) with torch.no_grad(): output = model(input_batch) probabilities = torch.nn.functional.softmax(output[0], dim=0) max_value, predicted_class = torch.max(probabilities, 0) return classes[predicted_class.item()], max_value.item() * 100 st.title('Vegetable Classification for learning') st.write('you can upload your image of veggies below') uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert('RGB') st.image(image, caption='Uploaded Image') label, confidence = predict(image) st.write(f'Predicted label: {label}, confidence: {confidence:.2f}%')