hassaanik commited on
Commit
5b55f98
·
verified ·
1 Parent(s): a651f3b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -37
app.py CHANGED
@@ -1,39 +1,3 @@
1
  import gradio as gr
2
- import torch
3
- from torchvision import transforms as tt
4
- from PIL import Image
5
- from predict import predict_potato, predict_tomato # Assuming you have functions to predict for potato and tomato
6
- from model import model_potato, model_tomato # Assuming you have two separate models
7
 
8
- # Load models (assuming they are saved in the "models" directory)
9
- model_potato.load_state_dict(torch.load("models/potato_model_statedict__f.pth", map_location=torch.device('cpu')))
10
- model_tomato.load_state_dict(torch.load("models/tomato_model_statedict__f.pth", map_location=torch.device('cpu')))
11
-
12
- # Define a function to make predictions based on the selected model
13
- def classify_image(image, plant_type):
14
- if plant_type == "Potato":
15
- class_name, probability = predict_potato(image, model_potato)
16
- else:
17
- class_name, probability = predict_tomato(image, model_tomato)
18
-
19
- return {
20
- "Predicted Class": class_name,
21
- "Probability (%)": f"{probability * 100:.2f}%"
22
- }
23
-
24
- # Set up Gradio interface
25
- iface = gr.Interface(
26
- fn=classify_image,
27
- inputs=[
28
- gr.inputs.Image(type="file", label="Upload an Image"),
29
- gr.inputs.Radio(["Potato", "Tomato"], label="Select Plant Type")
30
- ],
31
- outputs=[
32
- gr.outputs.Label(num_top_classes=1, label="Prediction Results")
33
- ],
34
- title="Potato and Tomato Disease Classification",
35
- description="Upload an image of a potato or tomato leaf to classify the disease."
36
- )
37
-
38
- # Launch Gradio interface
39
- iface.launch()
 
1
  import gradio as gr
 
 
 
 
 
2
 
3
+ gr.load("models/hassaanik/Plant_Disease_Classification").launch()