Spaces:
Running
Running
Update flask/app.py
Browse files- flask/app.py +60 -38
flask/app.py
CHANGED
@@ -6,8 +6,12 @@ import base64
|
|
6 |
import json
|
7 |
import cv2
|
8 |
import numpy as np
|
|
|
9 |
from flask import Flask, request, jsonify
|
10 |
from time import gmtime, strftime
|
|
|
|
|
|
|
11 |
|
12 |
from engine.header import *
|
13 |
|
@@ -17,9 +21,7 @@ root_path = os.path.dirname(dir_path)
|
|
17 |
|
18 |
MATCH_THRESHOLD = 0.67
|
19 |
|
20 |
-
app =
|
21 |
-
app.config['SITE'] = "http://0.0.0.0:8000/"
|
22 |
-
app.config['DEBUG'] = False
|
23 |
|
24 |
version = get_version().decode('utf-8')
|
25 |
print_info('\t <Recognito Face Recognition> \t version {}'.format(version))
|
@@ -36,7 +38,6 @@ def activate_sdk():
|
|
36 |
if online_key is None:
|
37 |
print_warning("Recognition online license key not found!")
|
38 |
else:
|
39 |
-
print_info(f"FR_LICENSE_KEY: {online_key}")
|
40 |
ret = init_sdk(dict_path.encode('utf-8'), online_key.encode('utf-8'))
|
41 |
|
42 |
if ret == 0:
|
@@ -86,48 +87,58 @@ def generate_response(result, similarity=None, face_bboxes=None, face_features=N
|
|
86 |
data["data"]["image1"] = images[0]
|
87 |
data["data"]["image2"] = images[1]
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
@app.route('/api/compare_face', methods=['POST'])
|
95 |
-
def compare_face_api():
|
96 |
-
try:
|
97 |
-
file1 = request.files['image1']
|
98 |
-
image_mat1 = cv2.imdecode(np.frombuffer(file1.read(), np.uint8), cv2.IMREAD_COLOR)
|
99 |
-
except:
|
100 |
-
response = generate_response("Failed to open image1")
|
101 |
-
return response
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
try:
|
104 |
-
|
105 |
-
image_mat2 =
|
106 |
-
except:
|
107 |
-
response = generate_response("Failed to open image2")
|
108 |
-
return response
|
109 |
|
|
|
|
|
|
|
|
|
110 |
result, score, face_bboxes, face_features = compare_face(image_mat1, image_mat2, MATCH_THRESHOLD)
|
111 |
response = generate_response(result, score, face_bboxes, face_features)
|
112 |
return response
|
113 |
|
114 |
-
|
115 |
-
@app.route('/api/compare_face_base64', methods=['POST'])
|
116 |
-
def coompare_face_base64_api():
|
117 |
-
content = request.get_json()
|
118 |
-
|
119 |
try:
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
try:
|
127 |
-
|
128 |
-
image_mat2 =
|
129 |
except:
|
130 |
-
response = generate_response("Failed to open
|
131 |
return response
|
132 |
|
133 |
result, score, face_bboxes, face_features = compare_face(image_mat1, image_mat2, MATCH_THRESHOLD)
|
@@ -138,5 +149,16 @@ if __name__ == '__main__':
|
|
138 |
ret = activate_sdk()
|
139 |
if ret != 0:
|
140 |
exit(-1)
|
141 |
-
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
import json
|
7 |
import cv2
|
8 |
import numpy as np
|
9 |
+
import gradio as gr
|
10 |
from flask import Flask, request, jsonify
|
11 |
from time import gmtime, strftime
|
12 |
+
from fastapi import FastAPI, File, UploadFile
|
13 |
+
from fastapi.responses import JSONResponse
|
14 |
+
from typing import Dict
|
15 |
|
16 |
from engine.header import *
|
17 |
|
|
|
21 |
|
22 |
MATCH_THRESHOLD = 0.67
|
23 |
|
24 |
+
app = FastAPI()
|
|
|
|
|
25 |
|
26 |
version = get_version().decode('utf-8')
|
27 |
print_info('\t <Recognito Face Recognition> \t version {}'.format(version))
|
|
|
38 |
if online_key is None:
|
39 |
print_warning("Recognition online license key not found!")
|
40 |
else:
|
|
|
41 |
ret = init_sdk(dict_path.encode('utf-8'), online_key.encode('utf-8'))
|
42 |
|
43 |
if ret == 0:
|
|
|
87 |
data["data"]["image1"] = images[0]
|
88 |
data["data"]["image2"] = images[1]
|
89 |
|
90 |
+
return JSONResponse(content=data, status_code=200)
|
91 |
+
|
92 |
+
@app.get("/")
|
93 |
+
def read_root():
|
94 |
+
return {"status": "API is running"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
+
def read_image(file: UploadFile) -> np.ndarray:
|
97 |
+
# Read the image file and convert it to OpenCV format
|
98 |
+
image_bytes = file.file.read()
|
99 |
+
image_np = np.frombuffer(image_bytes, np.uint8)
|
100 |
+
image = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
|
101 |
+
return image
|
102 |
+
|
103 |
+
@app.post("/api/compare_face")
|
104 |
+
async def compare_face_api(
|
105 |
+
image1: UploadFile = File(...),
|
106 |
+
image2: UploadFile = File(...)
|
107 |
+
) -> JSONResponse:
|
108 |
try:
|
109 |
+
image_mat1 = read_image(image1)
|
110 |
+
image_mat2 = read_image(image2)
|
|
|
|
|
|
|
111 |
|
112 |
+
except Exception as e:
|
113 |
+
response = generate_response("Failed to open image")
|
114 |
+
return response
|
115 |
+
|
116 |
result, score, face_bboxes, face_features = compare_face(image_mat1, image_mat2, MATCH_THRESHOLD)
|
117 |
response = generate_response(result, score, face_bboxes, face_features)
|
118 |
return response
|
119 |
|
120 |
+
def decode_base64_image(base64_string: str) -> np.ndarray:
|
|
|
|
|
|
|
|
|
121 |
try:
|
122 |
+
image_data = base64.b64decode(base64_string)
|
123 |
+
image_np = np.frombuffer(image_data, np.uint8)
|
124 |
+
image = cv2.imdecode(image_np, cv2.IMREAD_COLOR)
|
125 |
+
if image is None:
|
126 |
+
raise ValueError("Decoded image is None")
|
127 |
+
return image
|
128 |
+
except Exception as e:
|
129 |
+
raise ValueError(f"Failed to decode base64 image: {str(e)}")
|
130 |
+
|
131 |
+
@app.post("/api/compare_face_base64")
|
132 |
+
async def compare_face_base64_api(
|
133 |
+
image1: str,
|
134 |
+
image2: str
|
135 |
+
) -> JSONResponse:
|
136 |
+
|
137 |
try:
|
138 |
+
image_mat1 = decode_base64_image(image1)
|
139 |
+
image_mat2 = decode_base64_image(image2)
|
140 |
except:
|
141 |
+
response = generate_response("Failed to open image")
|
142 |
return response
|
143 |
|
144 |
result, score, face_bboxes, face_features = compare_face(image_mat1, image_mat2, MATCH_THRESHOLD)
|
|
|
149 |
ret = activate_sdk()
|
150 |
if ret != 0:
|
151 |
exit(-1)
|
152 |
+
|
153 |
+
dummy_interface = gr.Interface(
|
154 |
+
fn=lambda x: "API ready.",
|
155 |
+
inputs=gr.Textbox(label="Info"),
|
156 |
+
outputs=gr.Textbox(label="Response"),
|
157 |
+
allow_flagging="never" # 🚫 disables writing to `flagged/`
|
158 |
+
)
|
159 |
+
|
160 |
+
gr_app = gr.mount_gradio_app(app, dummy_interface, path="/gradio")
|
161 |
+
|
162 |
+
import uvicorn
|
163 |
+
uvicorn.run(gr_app, host="0.0.0.0", port=8000)
|
164 |
+
|