import torch from PIL import Image import numpy as np import streamlit as st from ultralytics import YOLO # Load YOLOv10 model model = YOLO('best.pt') # Load the pre-trained model # Streamlit App st.title("YOLO Object Detection with Confidence Threshold") st.sidebar.title("Options") st.sidebar.markdown("Upload an image to detect objects.") uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file: # Load the image image = Image.open(uploaded_file).convert('RGB') st.image(image, caption="Uploaded Image", use_column_width=True) # Perform inference with a confidence threshold of 0.25 st.write("Detecting objects with confidence threshold of 0.25...") results = model.predict(source=image, conf=0.25, save=False) # Directly pass PIL image # Annotate and display the image annotated_image = results[0].plot() # Get annotated image with bounding boxes st.image(annotated_image, caption="Detected Objects", use_column_width=True) # Show raw predictions st.write("Detection Results:") for result in results: for box in result.boxes: class_id = int(box.cls) # Convert to Python int confidence = float(box.conf) # Convert to Python float bbox = box.xyxy.tolist() # Bounding box coordinates as a list st.write( f"Class: {class_id}, Confidence: {confidence:.2f}, Box: {bbox}" ) st.sidebar.info("Developed using YOLO")