hb-setosys commited on
Commit
9fcad62
·
verified ·
1 Parent(s): 59211e7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -0
app.py CHANGED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ from tensorflow.keras.applications import ResNet152, preprocess_input, decode_predictions
4
+ from tensorflow.keras.preprocessing.image import img_to_array
5
+ from PIL import Image
6
+ import numpy as np
7
+
8
+ # Load the pre-trained ResNet152 model
9
+ MODEL_PATH = "resnet152-image-classifier" # Directory where the model is saved
10
+ model = tf.keras.models.load_model(MODEL_PATH)
11
+
12
+ def predict_image(image):
13
+ """
14
+ This function processes the uploaded image and returns the top 3 predictions.
15
+ """
16
+ # Preprocess the image
17
+ image = image.resize((224, 224)) # ResNet152 expects 224x224 input
18
+ image_array = img_to_array(image)
19
+ image_array = preprocess_input(image_array) # Normalize the image
20
+ image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
21
+
22
+ # Get predictions
23
+ predictions = model.predict(image_array)
24
+ decoded_predictions = decode_predictions(predictions, top=3)[0]
25
+
26
+ # Format predictions as a dictionary
27
+ results = {label: f"{confidence * 100:.2f}%" for _, label, confidence in decoded_predictions}
28
+ return results
29
+
30
+ # Create the Gradio interface
31
+ interface = gr.Interface(
32
+ fn=predict_image,
33
+ inputs=gr.Image(type="pil"), # Accepts an image input
34
+ outputs=gr.Label(num_top_classes=3), # Shows top 3 predictions with confidence
35
+ title="ResNet152 Image Classifier",
36
+ description="Upload an image, and the model will predict what's in the image.",
37
+ examples=["dog.jpg", "cat.jpg"], # Example images for users to test
38
+ )
39
+
40
+ # Launch the Gradio app
41
+ if __name__ == "__main__":
42
+ interface.launch()