Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow.keras.applications import ResNet152, preprocess_input, decode_predictions
|
4 |
+
from tensorflow.keras.preprocessing.image import img_to_array
|
5 |
+
from PIL import Image
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
# Load the pre-trained ResNet152 model
|
9 |
+
MODEL_PATH = "resnet152-image-classifier" # Directory where the model is saved
|
10 |
+
model = tf.keras.models.load_model(MODEL_PATH)
|
11 |
+
|
12 |
+
def predict_image(image):
|
13 |
+
"""
|
14 |
+
This function processes the uploaded image and returns the top 3 predictions.
|
15 |
+
"""
|
16 |
+
# Preprocess the image
|
17 |
+
image = image.resize((224, 224)) # ResNet152 expects 224x224 input
|
18 |
+
image_array = img_to_array(image)
|
19 |
+
image_array = preprocess_input(image_array) # Normalize the image
|
20 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
21 |
+
|
22 |
+
# Get predictions
|
23 |
+
predictions = model.predict(image_array)
|
24 |
+
decoded_predictions = decode_predictions(predictions, top=3)[0]
|
25 |
+
|
26 |
+
# Format predictions as a dictionary
|
27 |
+
results = {label: f"{confidence * 100:.2f}%" for _, label, confidence in decoded_predictions}
|
28 |
+
return results
|
29 |
+
|
30 |
+
# Create the Gradio interface
|
31 |
+
interface = gr.Interface(
|
32 |
+
fn=predict_image,
|
33 |
+
inputs=gr.Image(type="pil"), # Accepts an image input
|
34 |
+
outputs=gr.Label(num_top_classes=3), # Shows top 3 predictions with confidence
|
35 |
+
title="ResNet152 Image Classifier",
|
36 |
+
description="Upload an image, and the model will predict what's in the image.",
|
37 |
+
examples=["dog.jpg", "cat.jpg"], # Example images for users to test
|
38 |
+
)
|
39 |
+
|
40 |
+
# Launch the Gradio app
|
41 |
+
if __name__ == "__main__":
|
42 |
+
interface.launch()
|