Spaces:
Sleeping
Sleeping
import os | |
import cv2 | |
import numpy as np | |
import torch | |
from ultralytics import YOLO | |
from sort import Sort | |
import gradio as gr | |
# Load YOLOv12x model | |
MODEL_PATH = "setosys_yolov12x.pt" | |
model = YOLO(MODEL_PATH) | |
# COCO dataset class ID for people | |
PEOPLE_CLASS_ID = 0 # "people" | |
# Initialize SORT tracker | |
tracker = Sort() | |
# Minimum confidence threshold for detection | |
CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection | |
# Distance threshold to avoid duplicate counts | |
DISTANCE_THRESHOLD = 50 | |
# Dictionary to define keyword-based time intervals | |
TIME_INTERVALS = { | |
"one": 1, "two": 2, "three": 3, "four": 4, "five": 5, | |
"six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11 | |
} | |
def determine_time_interval(video_filename): | |
""" Determines frame skip interval based on keywords in the filename. """ | |
print(f"Checking filename: {video_filename}") # Debugging | |
for keyword, interval in TIME_INTERVALS.items(): | |
if keyword in video_filename: | |
print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging | |
return interval | |
print("No keyword match, using default interval: 5") # Debugging | |
return 5 # Default interval | |
def count_unique_people(video_path): | |
""" Counts unique people in a video using YOLOv12x and SORT tracking. """ | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
return {"Error": "Unable to open video file."} | |
# Reset variables at the start of each analysis | |
unique_people_ids = set() | |
people_history = {} | |
# Get FPS of the video | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
# Extract filename from the path and convert to lowercase | |
video_filename = os.path.basename(video_path).lower() | |
# Determine the dynamic time interval based on filename keywords | |
time_interval = determine_time_interval(video_filename) | |
# Get total frames in the video | |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
# Ensure frame_skip does not exceed total frames | |
frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping | |
frame_count = 0 | |
# Reinitialize the tracker to clear any previous state | |
tracker = Sort() | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break # End of video | |
frame_count += 1 | |
if frame_count % frame_skip != 0: | |
continue # Skip frames based on interval | |
# Run YOLOv12x inference | |
results = model(frame, verbose=False) | |
detections = [] | |
for result in results: | |
for box in result.boxes: | |
class_id = int(box.cls.item()) # Get class ID | |
confidence = float(box.conf.item()) # Get confidence score | |
# Track only people | |
if class_id == PEOPLE_CLASS_ID and confidence > CONFIDENCE_THRESHOLD: | |
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box | |
detections.append([x1, y1, x2, y2, confidence]) | |
# Debugging: Check detections | |
print(f"Frame {frame_count}: Detections -> {detections}") | |
if len(detections) > 0: | |
detections = np.array(detections) | |
tracked_objects = tracker.update(detections) | |
else: | |
tracked_objects = [] # Prevent tracker from resetting | |
# Debugging: Check tracked objects | |
print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}") | |
for obj in tracked_objects: | |
people_id = int(obj[4]) # Unique ID assigned by SORT | |
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates | |
people_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate people center | |
# If people is already in history, check movement distance | |
if people_id in people_history: | |
last_position = people_history[people_id]["position"] | |
distance = np.linalg.norm(np.array(people_center) - np.array(last_position)) | |
if distance > DISTANCE_THRESHOLD: | |
unique_people_ids.add(people_id) # Add only if moved significantly | |
else: | |
# If people is not in history, add it | |
people_history[people_id] = { | |
"frame_count": frame_count, | |
"position": people_center | |
} | |
unique_people_ids.add(people_id) | |
cap.release() | |
return {"Total Unique People": len(unique_people_ids)} | |
# Gradio UI function | |
def analyze_video(video_file): | |
result = count_unique_people(video_file) | |
return "\n".join([f"{key}: {value}" for key, value in result.items()]) | |
# Define Gradio interface | |
iface = gr.Interface( | |
fn=analyze_video, | |
inputs=gr.Video(label="Upload Video"), | |
outputs=gr.Textbox(label="Analysis Result"), | |
title="YOLOv12x Unique People Counter", | |
description="Upload a video to count unique people using YOLOv12x and SORT tracking." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() | |