hb-setosys's picture
Update app.py
0972c78 verified
import os
import cv2
import numpy as np
import torch
from ultralytics import YOLO
from sort import Sort
import gradio as gr
# Load YOLOv12x model
MODEL_PATH = "setosys_yolov12x.pt"
model = YOLO(MODEL_PATH)
# COCO dataset class ID for people
PEOPLE_CLASS_ID = 0 # "people"
# Initialize SORT tracker
tracker = Sort()
# Minimum confidence threshold for detection
CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection
# Distance threshold to avoid duplicate counts
DISTANCE_THRESHOLD = 50
# Dictionary to define keyword-based time intervals
TIME_INTERVALS = {
"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
"six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11
}
def determine_time_interval(video_filename):
""" Determines frame skip interval based on keywords in the filename. """
print(f"Checking filename: {video_filename}") # Debugging
for keyword, interval in TIME_INTERVALS.items():
if keyword in video_filename:
print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging
return interval
print("No keyword match, using default interval: 5") # Debugging
return 5 # Default interval
def count_unique_people(video_path):
""" Counts unique people in a video using YOLOv12x and SORT tracking. """
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {"Error": "Unable to open video file."}
# Reset variables at the start of each analysis
unique_people_ids = set()
people_history = {}
# Get FPS of the video
fps = int(cap.get(cv2.CAP_PROP_FPS))
# Extract filename from the path and convert to lowercase
video_filename = os.path.basename(video_path).lower()
# Determine the dynamic time interval based on filename keywords
time_interval = determine_time_interval(video_filename)
# Get total frames in the video
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Ensure frame_skip does not exceed total frames
frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping
frame_count = 0
# Reinitialize the tracker to clear any previous state
tracker = Sort()
while True:
ret, frame = cap.read()
if not ret:
break # End of video
frame_count += 1
if frame_count % frame_skip != 0:
continue # Skip frames based on interval
# Run YOLOv12x inference
results = model(frame, verbose=False)
detections = []
for result in results:
for box in result.boxes:
class_id = int(box.cls.item()) # Get class ID
confidence = float(box.conf.item()) # Get confidence score
# Track only people
if class_id == PEOPLE_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
detections.append([x1, y1, x2, y2, confidence])
# Debugging: Check detections
print(f"Frame {frame_count}: Detections -> {detections}")
if len(detections) > 0:
detections = np.array(detections)
tracked_objects = tracker.update(detections)
else:
tracked_objects = [] # Prevent tracker from resetting
# Debugging: Check tracked objects
print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}")
for obj in tracked_objects:
people_id = int(obj[4]) # Unique ID assigned by SORT
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
people_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate people center
# If people is already in history, check movement distance
if people_id in people_history:
last_position = people_history[people_id]["position"]
distance = np.linalg.norm(np.array(people_center) - np.array(last_position))
if distance > DISTANCE_THRESHOLD:
unique_people_ids.add(people_id) # Add only if moved significantly
else:
# If people is not in history, add it
people_history[people_id] = {
"frame_count": frame_count,
"position": people_center
}
unique_people_ids.add(people_id)
cap.release()
return {"Total Unique People": len(unique_people_ids)}
# Gradio UI function
def analyze_video(video_file):
result = count_unique_people(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
# Define Gradio interface
iface = gr.Interface(
fn=analyze_video,
inputs=gr.Video(label="Upload Video"),
outputs=gr.Textbox(label="Analysis Result"),
title="YOLOv12x Unique People Counter",
description="Upload a video to count unique people using YOLOv12x and SORT tracking."
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()