Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from ultralytics import YOLO
|
6 |
+
from sort import Sort
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Load YOLOv12x model
|
10 |
+
MODEL_PATH = "yolov12x.pt"
|
11 |
+
model = YOLO(MODEL_PATH)
|
12 |
+
|
13 |
+
# COCO dataset class ID for truck
|
14 |
+
TRUCK_CLASS_ID = 7 # "truck"
|
15 |
+
|
16 |
+
# Initialize SORT tracker
|
17 |
+
tracker = Sort()
|
18 |
+
|
19 |
+
# Minimum confidence threshold for detection
|
20 |
+
CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection
|
21 |
+
|
22 |
+
# Distance threshold to avoid duplicate counts
|
23 |
+
DISTANCE_THRESHOLD = 50
|
24 |
+
|
25 |
+
# Dictionary to define keyword-based time intervals
|
26 |
+
TIME_INTERVALS = {
|
27 |
+
"one": 1, "two": 2, "three": 3, "four": 4, "five": 5,
|
28 |
+
"six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11
|
29 |
+
}
|
30 |
+
|
31 |
+
def determine_time_interval(video_filename):
|
32 |
+
""" Determines frame skip interval based on keywords in the filename. """
|
33 |
+
print(f"Checking filename: {video_filename}") # Debugging
|
34 |
+
for keyword, interval in TIME_INTERVALS.items():
|
35 |
+
if keyword in video_filename:
|
36 |
+
print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging
|
37 |
+
return interval
|
38 |
+
print("No keyword match, using default interval: 5") # Debugging
|
39 |
+
return 5 # Default interval
|
40 |
+
|
41 |
+
def count_unique_trucks(video_path):
|
42 |
+
""" Counts unique trucks in a video using YOLOv12x and SORT tracking. """
|
43 |
+
cap = cv2.VideoCapture(video_path)
|
44 |
+
if not cap.isOpened():
|
45 |
+
return {"Error": "Unable to open video file."}
|
46 |
+
|
47 |
+
# Reset variables at the start of each analysis
|
48 |
+
unique_truck_ids = set()
|
49 |
+
truck_history = {}
|
50 |
+
|
51 |
+
# Get FPS of the video
|
52 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
53 |
+
|
54 |
+
# Extract filename from the path and convert to lowercase
|
55 |
+
video_filename = os.path.basename(video_path).lower()
|
56 |
+
|
57 |
+
# Determine the dynamic time interval based on filename keywords
|
58 |
+
time_interval = determine_time_interval(video_filename)
|
59 |
+
|
60 |
+
# Get total frames in the video
|
61 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
62 |
+
|
63 |
+
# Ensure frame_skip does not exceed total frames
|
64 |
+
frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping
|
65 |
+
|
66 |
+
frame_count = 0
|
67 |
+
|
68 |
+
# Reinitialize the tracker to clear any previous state
|
69 |
+
tracker = Sort()
|
70 |
+
|
71 |
+
while True:
|
72 |
+
ret, frame = cap.read()
|
73 |
+
if not ret:
|
74 |
+
break # End of video
|
75 |
+
|
76 |
+
frame_count += 1
|
77 |
+
if frame_count % frame_skip != 0:
|
78 |
+
continue # Skip frames based on interval
|
79 |
+
|
80 |
+
# Run YOLOv12x inference
|
81 |
+
results = model(frame, verbose=False)
|
82 |
+
|
83 |
+
detections = []
|
84 |
+
for result in results:
|
85 |
+
for box in result.boxes:
|
86 |
+
class_id = int(box.cls.item()) # Get class ID
|
87 |
+
confidence = float(box.conf.item()) # Get confidence score
|
88 |
+
|
89 |
+
# Track only trucks
|
90 |
+
if class_id == TRUCK_CLASS_ID and confidence > CONFIDENCE_THRESHOLD:
|
91 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
|
92 |
+
detections.append([x1, y1, x2, y2, confidence])
|
93 |
+
|
94 |
+
# Debugging: Check detections
|
95 |
+
print(f"Frame {frame_count}: Detections -> {detections}")
|
96 |
+
|
97 |
+
if len(detections) > 0:
|
98 |
+
detections = np.array(detections)
|
99 |
+
tracked_objects = tracker.update(detections)
|
100 |
+
else:
|
101 |
+
tracked_objects = [] # Prevent tracker from resetting
|
102 |
+
|
103 |
+
# Debugging: Check tracked objects
|
104 |
+
print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}")
|
105 |
+
|
106 |
+
for obj in tracked_objects:
|
107 |
+
truck_id = int(obj[4]) # Unique ID assigned by SORT
|
108 |
+
x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates
|
109 |
+
|
110 |
+
truck_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate truck center
|
111 |
+
|
112 |
+
# If truck is already in history, check movement distance
|
113 |
+
if truck_id in truck_history:
|
114 |
+
last_position = truck_history[truck_id]["position"]
|
115 |
+
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
|
116 |
+
|
117 |
+
if distance > DISTANCE_THRESHOLD:
|
118 |
+
unique_truck_ids.add(truck_id) # Add only if moved significantly
|
119 |
+
|
120 |
+
else:
|
121 |
+
# If truck is not in history, add it
|
122 |
+
truck_history[truck_id] = {
|
123 |
+
"frame_count": frame_count,
|
124 |
+
"position": truck_center
|
125 |
+
}
|
126 |
+
unique_truck_ids.add(truck_id)
|
127 |
+
|
128 |
+
cap.release()
|
129 |
+
return {"Total Unique Trucks": len(unique_truck_ids)}
|
130 |
+
|
131 |
+
|
132 |
+
# Gradio UI function
|
133 |
+
def analyze_video(video_file):
|
134 |
+
result = count_unique_trucks(video_file)
|
135 |
+
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
136 |
+
|
137 |
+
# Define Gradio interface
|
138 |
+
iface = gr.Interface(
|
139 |
+
fn=analyze_video,
|
140 |
+
inputs=gr.Video(label="Upload Video"),
|
141 |
+
outputs=gr.Textbox(label="Analysis Result"),
|
142 |
+
title="YOLOv12x Unique Truck Counter",
|
143 |
+
description="Upload a video to count unique trucks using YOLOv12x and SORT tracking."
|
144 |
+
)
|
145 |
+
|
146 |
+
# Launch the Gradio app
|
147 |
+
if __name__ == "__main__":
|
148 |
+
iface.launch()
|