import os import cv2 import numpy as np import torch from ultralytics import YOLO from sort import Sort import gradio as gr # Load YOLOv12x model MODEL_PATH = "setosys_yolov12x.pt" model = YOLO(MODEL_PATH) # COCO dataset class ID for people PEOPLE_CLASS_ID = 0 # "people" # Initialize SORT tracker tracker = Sort() # Minimum confidence threshold for detection CONFIDENCE_THRESHOLD = 0.4 # Lowered for better detection # Distance threshold to avoid duplicate counts DISTANCE_THRESHOLD = 50 # Dictionary to define keyword-based time intervals TIME_INTERVALS = { "one": 1, "two": 2, "three": 3, "four": 4, "five": 5, "six": 6, "seven": 7, "eight": 8, "nine": 9, "ten": 10, "eleven": 11 } def determine_time_interval(video_filename): """ Determines frame skip interval based on keywords in the filename. """ print(f"Checking filename: {video_filename}") # Debugging for keyword, interval in TIME_INTERVALS.items(): if keyword in video_filename: print(f"Matched keyword: {keyword} -> Interval: {interval}") # Debugging return interval print("No keyword match, using default interval: 5") # Debugging return 5 # Default interval def count_unique_people(video_path): """ Counts unique people in a video using YOLOv12x and SORT tracking. """ cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return {"Error": "Unable to open video file."} # Reset variables at the start of each analysis unique_people_ids = set() people_history = {} # Get FPS of the video fps = int(cap.get(cv2.CAP_PROP_FPS)) # Extract filename from the path and convert to lowercase video_filename = os.path.basename(video_path).lower() # Determine the dynamic time interval based on filename keywords time_interval = determine_time_interval(video_filename) # Get total frames in the video total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) # Ensure frame_skip does not exceed total frames frame_skip = min(fps * time_interval, total_frames // 2) # Reduced skipping frame_count = 0 # Reinitialize the tracker to clear any previous state tracker = Sort() while True: ret, frame = cap.read() if not ret: break # End of video frame_count += 1 if frame_count % frame_skip != 0: continue # Skip frames based on interval # Run YOLOv12x inference results = model(frame, verbose=False) detections = [] for result in results: for box in result.boxes: class_id = int(box.cls.item()) # Get class ID confidence = float(box.conf.item()) # Get confidence score # Track only people if class_id == PEOPLE_CLASS_ID and confidence > CONFIDENCE_THRESHOLD: x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box detections.append([x1, y1, x2, y2, confidence]) # Debugging: Check detections print(f"Frame {frame_count}: Detections -> {detections}") if len(detections) > 0: detections = np.array(detections) tracked_objects = tracker.update(detections) else: tracked_objects = [] # Prevent tracker from resetting # Debugging: Check tracked objects print(f"Frame {frame_count}: Tracked Objects -> {tracked_objects}") for obj in tracked_objects: people_id = int(obj[4]) # Unique ID assigned by SORT x1, y1, x2, y2 = obj[:4] # Get the bounding box coordinates people_center = (x1 + x2) / 2, (y1 + y2) / 2 # Calculate people center # If people is already in history, check movement distance if people_id in people_history: last_position = people_history[people_id]["position"] distance = np.linalg.norm(np.array(people_center) - np.array(last_position)) if distance > DISTANCE_THRESHOLD: unique_people_ids.add(people_id) # Add only if moved significantly else: # If people is not in history, add it people_history[people_id] = { "frame_count": frame_count, "position": people_center } unique_people_ids.add(people_id) cap.release() return {"Total Unique People": len(unique_people_ids)} # Gradio UI function def analyze_video(video_file): result = count_unique_people(video_file) return "\n".join([f"{key}: {value}" for key, value in result.items()]) # Define Gradio interface iface = gr.Interface( fn=analyze_video, inputs=gr.Video(label="Upload Video"), outputs=gr.Textbox(label="Analysis Result"), title="YOLOv12x Unique People Counter", description="Upload a video to count unique people using YOLOv12x and SORT tracking." ) # Launch the Gradio app if __name__ == "__main__": iface.launch()