Spaces:
Sleeping
Sleeping
File size: 3,457 Bytes
b4a375f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import gradio as gr
import cv2
import numpy as np
import os
# Load YOLO model
net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg')
# Set backend (CPU or GPU)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
# Load class names
with open('coco.names', 'r') as f:
classes = [line.strip() for line in f.readlines()]
# Get YOLO output layer names
output_layers_names = net.getUnconnectedOutLayersNames()
def count_people_in_frame(frame):
"""
Detects people in a given frame (image) and returns count.
"""
height, width, _ = frame.shape
# Convert frame to YOLO format
blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
# Forward pass
layer_outputs = net.forward(output_layers_names)
# Process detections
boxes, confidences = [], []
for output in layer_outputs:
for detection in output:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if classes[class_id] == 'person' and confidence > 0.5:
center_x, center_y = int(detection[0] * width), int(detection[1] * height)
w, h = int(detection[2] * width), int(detection[3] * height)
x, y = int(center_x - w / 2), int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
# Apply Non-Maximum Suppression (NMS)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else []
# Draw bounding boxes on the image
for i in indexes:
x, y, w, h = boxes[i]
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# Return processed frame and number of people detected
return frame, len(indexes)
def count_people_video(video_path):
"""
Process video and count people per frame.
"""
if not os.path.exists(video_path):
return "Error: Video file not found."
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return "Error: Unable to open video file."
frame_count = 0
people_per_frame = []
while True:
ret, frame = cap.read()
if not ret:
break
# Count people in the frame
_, people_count = count_people_in_frame(frame)
people_per_frame.append(people_count)
frame_count += 1
cap.release()
# Generate analytics
return {
"People in Video": int(np.max(people_per_frame)) if people_per_frame else 0,
}
def analyze_video(video_file):
result = count_people_video(video_file)
return "\n".join([f"{key}: {value}" for key, value in result.items()])
def analyze_image(image):
image_cv = np.array(image) # Convert PIL image to NumPy array
processed_image, people_count = count_people_in_frame(image_cv)
return processed_image, f"People in Image: {people_count}"
# Gradio Interface
interface = gr.Interface(
fn=[analyze_image, analyze_video], # Supports both image & video
inputs=[gr.Image(type="pil", label="Upload Image"), gr.Video(label="Upload Video")],
outputs=[gr.Image(label="Processed Image"), gr.Textbox(label="People Counting Results")],
title="YOLO-based People Counter",
description="Upload an image or video to detect and count people using YOLOv3."
)
# Launch app
if __name__ == "__main__":
interface.launch()
|