import gradio as gr import cv2 import numpy as np import os # Load YOLO model net = cv2.dnn.readNet('yolov3.weights', 'yolov3.cfg') # Set backend (CPU or GPU) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_OPENCV) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU) # Load class names with open('coco.names', 'r') as f: classes = [line.strip() for line in f.readlines()] # Get YOLO output layer names output_layers_names = net.getUnconnectedOutLayersNames() def count_people_in_frame(frame): """ Detects people in a given frame (image) and returns count. """ height, width, _ = frame.shape # Convert frame to YOLO format blob = cv2.dnn.blobFromImage(frame, 1/255.0, (416, 416), swapRB=True, crop=False) net.setInput(blob) # Forward pass layer_outputs = net.forward(output_layers_names) # Process detections boxes, confidences = [], [] for output in layer_outputs: for detection in output: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if classes[class_id] == 'person' and confidence > 0.5: center_x, center_y = int(detection[0] * width), int(detection[1] * height) w, h = int(detection[2] * width), int(detection[3] * height) x, y = int(center_x - w / 2), int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) # Apply Non-Maximum Suppression (NMS) indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) if boxes else [] # Draw bounding boxes on the image for i in indexes: x, y, w, h = boxes[i] cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) # Return processed frame and number of people detected return frame, len(indexes) def count_people_video(video_path): """ Process video and count people per frame. """ if not os.path.exists(video_path): return "Error: Video file not found." cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return "Error: Unable to open video file." frame_count = 0 people_per_frame = [] while True: ret, frame = cap.read() if not ret: break # Count people in the frame _, people_count = count_people_in_frame(frame) people_per_frame.append(people_count) frame_count += 1 cap.release() # Generate analytics return { "People in Video": int(np.max(people_per_frame)) if people_per_frame else 0, } def analyze_video(video_file): result = count_people_video(video_file) return "\n".join([f"{key}: {value}" for key, value in result.items()]) def analyze_image(image): image_cv = np.array(image) # Convert PIL image to NumPy array processed_image, people_count = count_people_in_frame(image_cv) return processed_image, f"People in Image: {people_count}" # Gradio Interface interface = gr.Interface( fn=[analyze_image, analyze_video], # Supports both image & video inputs=[gr.Image(type="pil", label="Upload Image"), gr.Video(label="Upload Video")], outputs=[gr.Image(label="Processed Image"), gr.Textbox(label="People Counting Results")], title="YOLO-based People Counter", description="Upload an image or video to detect and count people using YOLOv3." ) # Launch app if __name__ == "__main__": interface.launch()