Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from ultralytics import YOLO
|
5 |
from sort import Sort
|
|
|
6 |
|
7 |
# Load YOLOv12x model
|
8 |
MODEL_PATH = "yolov12x.pt"
|
@@ -14,13 +15,7 @@ TRUCK_CLASS_ID = 7 # "truck"
|
|
14 |
# Initialize SORT tracker
|
15 |
tracker = Sort()
|
16 |
|
17 |
-
|
18 |
-
CONFIDENCE_THRESHOLD = 0.5
|
19 |
-
|
20 |
-
# Distance threshold to avoid duplicate counts
|
21 |
-
DISTANCE_THRESHOLD = 50
|
22 |
-
|
23 |
-
def count_unique_trucks(video_path):
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
if not cap.isOpened():
|
26 |
return "Error: Unable to open video file."
|
@@ -30,7 +25,7 @@ def count_unique_trucks(video_path):
|
|
30 |
|
31 |
# Get FPS of the video
|
32 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
33 |
-
frame_skip = fps *
|
34 |
|
35 |
frame_count = 0
|
36 |
|
@@ -41,7 +36,7 @@ def count_unique_trucks(video_path):
|
|
41 |
|
42 |
frame_count += 1
|
43 |
if frame_count % frame_skip != 0:
|
44 |
-
continue # Skip frames
|
45 |
|
46 |
# Run YOLOv12x inference
|
47 |
results = model(frame, verbose=False)
|
@@ -53,7 +48,7 @@ def count_unique_trucks(video_path):
|
|
53 |
confidence = float(box.conf.item()) # Get confidence score
|
54 |
|
55 |
# Track only trucks
|
56 |
-
if class_id == TRUCK_CLASS_ID and confidence >
|
57 |
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
|
58 |
detections.append([x1, y1, x2, y2, confidence])
|
59 |
|
@@ -72,7 +67,7 @@ def count_unique_trucks(video_path):
|
|
72 |
last_position = truck_history[truck_id]["position"]
|
73 |
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
|
74 |
|
75 |
-
if distance >
|
76 |
# If the truck moved significantly, count as new
|
77 |
unique_truck_ids.add(truck_id)
|
78 |
|
@@ -85,24 +80,27 @@ def count_unique_trucks(video_path):
|
|
85 |
unique_truck_ids.add(truck_id)
|
86 |
|
87 |
cap.release()
|
88 |
-
|
89 |
return {"Total Unique Trucks": len(unique_truck_ids)}
|
90 |
|
91 |
# Gradio UI function
|
92 |
-
def analyze_video(video_file):
|
93 |
-
|
94 |
-
return "\n".join([f"{key}: {value}" for key, value in result.items()])
|
95 |
|
96 |
# Define Gradio interface
|
97 |
-
import gradio as gr
|
98 |
iface = gr.Interface(
|
99 |
fn=analyze_video,
|
100 |
-
inputs=
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
)
|
105 |
|
106 |
# Launch the Gradio app
|
107 |
if __name__ == "__main__":
|
108 |
-
iface.launch()
|
|
|
3 |
import torch
|
4 |
from ultralytics import YOLO
|
5 |
from sort import Sort
|
6 |
+
import gradio as gr
|
7 |
|
8 |
# Load YOLOv12x model
|
9 |
MODEL_PATH = "yolov12x.pt"
|
|
|
15 |
# Initialize SORT tracker
|
16 |
tracker = Sort()
|
17 |
|
18 |
+
def count_unique_trucks(video_path, video_type, confidence_threshold, distance_threshold, frame_skip_seconds):
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
cap = cv2.VideoCapture(video_path)
|
20 |
if not cap.isOpened():
|
21 |
return "Error: Unable to open video file."
|
|
|
25 |
|
26 |
# Get FPS of the video
|
27 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
28 |
+
frame_skip = max(1, int(fps * frame_skip_seconds)) # Dynamic frame skipping
|
29 |
|
30 |
frame_count = 0
|
31 |
|
|
|
36 |
|
37 |
frame_count += 1
|
38 |
if frame_count % frame_skip != 0:
|
39 |
+
continue # Skip frames dynamically
|
40 |
|
41 |
# Run YOLOv12x inference
|
42 |
results = model(frame, verbose=False)
|
|
|
48 |
confidence = float(box.conf.item()) # Get confidence score
|
49 |
|
50 |
# Track only trucks
|
51 |
+
if class_id == TRUCK_CLASS_ID and confidence > confidence_threshold:
|
52 |
x1, y1, x2, y2 = map(int, box.xyxy[0]) # Get bounding box
|
53 |
detections.append([x1, y1, x2, y2, confidence])
|
54 |
|
|
|
67 |
last_position = truck_history[truck_id]["position"]
|
68 |
distance = np.linalg.norm(np.array(truck_center) - np.array(last_position))
|
69 |
|
70 |
+
if distance > distance_threshold:
|
71 |
# If the truck moved significantly, count as new
|
72 |
unique_truck_ids.add(truck_id)
|
73 |
|
|
|
80 |
unique_truck_ids.add(truck_id)
|
81 |
|
82 |
cap.release()
|
|
|
83 |
return {"Total Unique Trucks": len(unique_truck_ids)}
|
84 |
|
85 |
# Gradio UI function
|
86 |
+
def analyze_video(video_file, video_type, confidence, distance, frame_skip):
|
87 |
+
return count_unique_trucks(video_file, video_type, confidence, distance, frame_skip)
|
|
|
88 |
|
89 |
# Define Gradio interface
|
|
|
90 |
iface = gr.Interface(
|
91 |
fn=analyze_video,
|
92 |
+
inputs=[
|
93 |
+
gr.Video(label="Upload Video"),
|
94 |
+
gr.Radio(["drone", "fixed"], label="Video Type"),
|
95 |
+
gr.Slider(0.3, 0.9, 0.5, label="Confidence Threshold"),
|
96 |
+
gr.Slider(10, 100, 50, label="Distance Threshold"),
|
97 |
+
gr.Slider(1, 10, 2, label="Frame Skip (Seconds)"),
|
98 |
+
],
|
99 |
+
outputs=gr.JSON(label="Analysis Result"),
|
100 |
+
title="YOLOv12x Dynamic Truck Counter",
|
101 |
+
description="Upload a video, adjust parameters, and analyze unique trucks."
|
102 |
)
|
103 |
|
104 |
# Launch the Gradio app
|
105 |
if __name__ == "__main__":
|
106 |
+
iface.launch()
|